Probabilistic Anchor Assignment (PAA) 项目教程
2025-04-19 14:10:26作者:董斯意
1. 项目介绍
Probabilistic Anchor Assignment(PAA)是一个基于PyTorch的对象检测框架,它提出了一种新颖的锚点分配策略。该策略能够根据模型的训练状态,自适应地将锚点分为正样本和负样本,从而以概率方式推理样本的分离。PAA还研究了训练和测试目标之间的差距,并提出预测检测框的交并比(IoU)作为定位质量的度量,以减少这种差异。
2. 项目快速启动
以下是快速启动PAA项目的步骤:
首先,确保你已经安装了PyTorch和其他必要的依赖项。你可以在项目的requirements.txt文件中找到所有必需的库。
pip install -r requirements.txt
接下来,使用以下命令在8个GPU上以同步随机梯度下降(SGD)方式训练PAA_R_50_FPN_1x模型:
python -m torch.distributed.launch \
--nproc_per_node=8 \
--master_port=$((RANDOM + 10000)) \
tools/train_net.py \
--config-file configs/paa/paa_R_50_FPN_1x.yaml \
DATALOADER.NUM_WORKERS 2 \
OUTPUT_DIR training_dir/paa_R_50_FPN_1x
如果你想要使用更少的GPU,请将--nproc_per_node的值更改为所需的GPU数量。注意,不需要更改其他设置,总批量大小不会依赖于nproc_per_node。如果需要更改总批量大小,请在configs/paa/paa_R_50_FPN_1x.yaml中更改SOLVER.IMS_PER_BATCH的值。
为了进行推理,使用以下命令:
python tools/test_net.py \
--config-file configs/paa/paa_R_50_FPN_1x.yaml \
MODEL.WEIGHT /path/to/weight \
TEST.IMS_PER_BATCH 4
请确保将/path/to/weight替换为你的权重文件路径。如果遇到内存不足错误,可以尝试将TEST.IMS_PER_BATCH的值减小到1。
3. 应用案例和最佳实践
应用案例
PAA算法已经在多个对象检测任务中得到了应用,包括但不限于:
- 通用物体检测
- 实时物体检测
- 视频中的物体检测
最佳实践
- 在训练前确保数据集已经被正确预处理。
- 根据具体任务调整模型配置,例如锚点大小和数量。
- 使用适当的训练策略,例如学习率衰减和批量大小调整。
4. 典型生态项目
PAA可以与以下生态项目结合使用,以提升对象检测的性能:
- mmdetection: 一个开源的对象检测工具箱,提供了多种模型和基准测试。
- ATSS: 一种用于对象检测的锚点分配策略,可以作为PAA的基础。
以上就是关于Probabilistic Anchor Assignment (PAA)项目的简要教程。希望这些信息能够帮助你快速上手并有效地使用PAA进行对象检测任务。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析2 freeCodeCamp英语课程填空题提示缺失问题分析3 freeCodeCamp全栈开发课程中React实验项目的分类修正4 freeCodeCamp音乐播放器项目中的函数调用问题解析5 freeCodeCamp课程页面空白问题的技术分析与解决方案6 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析7 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 8 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析9 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析10 freeCodeCamp Cafe Menu项目中link元素的void特性解析
最新内容推荐
CVE-2024-38077伪代码修复版EXP资源详解:Windows远程桌面授权服务问题利用指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 开源电子设计自动化利器:KiCad EDA全方位使用指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 RadiAnt DICOM Viewer 2021.2:专业医学影像阅片软件的全面指南 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 WebVideoDownloader:高效网页视频抓取工具全面使用指南
项目优选
收起
deepin linux kernel
C
24
6
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
241
2.38 K
仓颉编译器源码及 cjdb 调试工具。
C++
115
86
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
405
React Native鸿蒙化仓库
JavaScript
216
291
Ascend Extension for PyTorch
Python
79
113
仓颉编程语言运行时与标准库。
Cangjie
122
97
仓颉编程语言测试用例。
Cangjie
34
71
暂无简介
Dart
539
118
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
590
119