SplitwiseSim 项目启动与配置教程
2025-05-22 05:33:40作者:冯爽妲Honey
1. 项目目录结构及介绍
SplitwiseSim 是一个离散事件模拟器,用于评估大型语言模型(LLM)推理在集群服务器中的服务。项目的目录结构如下:
splitwise-sim/
├── configs/ # 配置文件目录,包含不同场景的配置文件
├── data/ # 数据目录,可能包含模拟所需的输入数据
├── notebooks/ # Jupyter 笔记本,用于分析模拟结果和可视化
├── scripts/ # 脚本目录,包含启动模拟的脚本和其他实用工具
├── traces/ # 跟踪数据目录,可能包含请求的跟踪信息
├── .gitignore # Git 忽略文件,指定 Git 应忽略的文件和目录
├── LICENSE # 项目许可证文件
├── README.md # 项目说明文件
├── allocator.py # 分配器模块,用于管理资源分配
├── application.py # 应用程序模块,定义模拟中的应用逻辑
├── arbiter.py # 仲裁器模块,用于处理资源仲裁
├── clean.sh # 清理脚本,用于清理项目生成的文件
├── cluster.py # 集群模块,定义集群中的服务器和资源
├── executor.py # 执行器模块,用于执行模拟任务
├── flow.py # 流程模块,定义请求的处理流程
├── generate_trace.py # 生成跟踪数据的脚本
├── hardware_repo.py # 硬件仓库模块,定义可用的服务器硬件
├── initialize.py # 初始化模块,用于初始化模拟环境
├── instance.py # 实例模块,定义模拟中的实例
├── interconnect.py # 互联模块,定义服务器之间的互联逻辑
├── metrics.py # 度量模块,用于收集模拟中的度量信息
├── model.py # 模块模块,定义模拟中的模型
├── model_repo.py # 模型仓库模块,定义可用的模型
├── node.py # 节点模块,定义模拟中的节点
├── orchestrator_repo.py # 资源编排器仓库模块,定义资源编排器
├── performance_model.py # 性能模型模块,定义请求运行时间的估计模型
├── power_model.py # 功耗模型模块,定义功耗模型
├── processor.py # 处理器模块,定义处理器的逻辑
├── request.py # 请求模块,定义请求的逻辑
├── requirements.txt # 项目依赖文件,定义项目所需的Python包
├── router.py # 路由器模块,定义请求的路由逻辑
├── run.py # 启动脚本,用于启动模拟
├── scheduler.py # 调度器模块,定义请求的调度逻辑
├── server.py # 服务器模块,定义服务器的逻辑
├── simulator.py # 模拟器模块,定义模拟器的主要逻辑
├── start_state.py # 初始状态模块,定义模拟的初始状态
├── task.py # 任务模块,定义模拟中的任务
├── trace.py # 跟踪模块,定义请求的跟踪逻辑
├── utils.py # 工具模块,包含一些通用工具函数
2. 项目的启动文件介绍
项目的启动文件是 run.py。这个脚本负责读取配置文件,初始化模拟环境,并开始模拟过程。以下是一个简单的启动命令示例:
python run.py
在实际使用中,可以通过命令行参数来覆盖默认的配置设置。
3. 项目的配置文件介绍
项目的配置文件位于 configs/ 目录下,使用 YAML 格式。主要的配置文件是 config.yaml,它定义了模拟的顶级配置,包括集群配置、请求跟踪、路由器、仲裁器、应用程序、模型仓库、资源编排器仓库、硬件仓库、性能模型、初始状态等。
配置文件的结构如下:
cluster: ...
trace: ...
router: ...
arbiter: ...
application: ...
model_repo: ...
orchestrator_repo: ...
hardware_repo: ...
performance_model: ...
start_state: ...
每个部分都可以通过子配置文件进一步定义。例如,cluster 部分可以指向一个专门的文件来定义集群的详细配置。
配置文件可以通过命令行参数进行覆盖,例如:
python run.py cluster=some_other_config
以上就是 SplitwiseSim 项目的启动与配置教程,希望对您的使用有所帮助。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
340
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178