NVIDIA-INSTALLER 使用与技术文档
本文档旨在为用户提供关于如何安装和使用NVIDIA-INSTALLER的详细指南,同时介绍其API使用和安装方式。
1. 安装指南
在开始安装NVIDIA-INSTALLER之前,请确保已安装以下构建依赖项的开发包:
- ncurses
- pciutils
安装这些依赖项后,您可以开始构建nvidia-installer。
2. 项目使用说明
NVIDIA-INSTALLER的使用说明可以在NVIDIA驱动程序README的第4章“安装NVIDIA驱动程序”中找到。此文档通常可以从NVIDIA Linux驱动程序下载页面获取,并安装在/usr/share/doc/NVIDIA_GLX-1.0/目录下。
3. 项目API使用文档
目前没有关于nvidia-installer实现的正式文档,但源代码注释相对完善。开发者可以通过阅读源代码来了解API的使用和实现细节。
4. 项目安装方式
以下是构建预编译内核接口包的步骤:
- 运行以下命令解压NVIDIA驱动程序包:
sh NVIDIA-Linux-x86-XXX.YY.run --extract-only - 进入解压后的目录:
cd NVIDIA-Linux-x86-XXX.YY/kernel/ - 获取需要构建的模块列表:
modules=`head -n 4 ../.manifest | tail -n 1` - 根据模块列表生成内核接口文件:
interface_files=`for module in $modules; do echo $module | grep -v nvidia-uvm | sed -e 's/nvidia/nv/' -e 's/$/-linux.o/' done` - 构建内核接口文件:
make $interface_files - 为每个接口文件生成预编译内核接口包:
for interface in $interface_files; do nv_stem=`echo $interface | sed 's/-linux.o$//'` module_name=`echo $nv_stem | sed 's/nv/nvidia/'` ../mkprecompiled --pack precompiled-mykernel \ --driver-version XXX.YY \ --proc-version-string "`cat /proc/version`" \ --description "这是一个不感兴趣的描述" \ --kernel-interface $interface \ --linked-module-name $module_name.ko \ --core-object-name $module_name/$nv_stem-kernel.o_binary \ --target-directory . done - 如果存在nvidia-uvm.ko模块,同样为其生成预编译包:
if [ -f nvidia-uvm.ko ]; then ../mkprecompiled --pack precompiled-mykernel \ --kernel-module nvidia-uvm.ko \ --target-directory . fi - 创建目录并将生成的预编译包移动到该目录下:
mkdir -p precompiled mv precompiled-mykernel precompiled
请将"XXX.YY"替换为驱动程序版本号。
若要为其他内核版本构建预编译内核接口,请在make命令行中设置SYSSRC=/path/to/kernel-source。如果您的内核源代码使用单独的输出目录,请额外设置SYSOUT=/path/to/kernel-output。此外,您还需要从内核镜像中提取正确的版本字符串,以便传递给mkprecompiled命令。
使用预编译内核接口的用户可以按照以下步骤操作:
- 解压NVIDIA驱动程序包:
sh NVIDIA-Linux-x86-XXX.YY.run --extract-only - 创建预编译内核接口目录:
mkdir -p NVIDIA-Linux-x86-XXX.YY/kernel/precompiled - 将预编译内核接口包复制到该目录:
cp precompiled-mykernel NVIDIA-Linux-x86-XXX.YY/kernel/precompiled - 运行NVIDIA安装程序:
./NVIDIA-Linux-x86-XXX.YY/nvidia-installer
请注意,搜索预编译内核接口的路径已更新,现在的搜索顺序为:
-
如果指定了
--precompiled-kernel-interfaces-path选项,则搜索该目录;如果未找到匹配项,则 -
搜索
/lib/modules/precompiled/目录下的uname -r/nvidia/gfx/子目录;如果未找到匹配项,则 -
搜索
.run文件中usr/src/nv/precompiled目录;如果未找到匹配项,则 -
放弃并自行构建内核模块。
未来计划包括添加新的用户界面、增加额外的测试、清理内存泄漏、改进错误消息以及国际化支持。欢迎提交补丁,可通过linux-bugs@nvidia.com提交。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00