Delta Sharing 1.3.0 版本发布:共享数据查询优化与兼容性提升
Delta Sharing 是一个开源的数据共享协议和实现,它允许组织以安全、高效的方式共享大规模数据集。Delta Sharing 基于 Delta Lake 构建,提供了跨平台、跨组织的数据共享能力,同时保持了 Delta Lake 的事务性、版本控制和模式演化等核心特性。
近日,Delta Sharing 发布了 1.3.0 版本,这个版本主要聚焦于查询路径优化和兼容性改进,为数据共享场景提供了更稳定和高效的体验。让我们深入了解一下这个版本带来的重要改进。
查询参数哈希 ID 的应用
在数据共享场景中,查询参数的管理是一个重要课题。Delta Sharing 1.3.0 版本引入了 queryParamsHashId 机制,这是一个显著的架构改进。
传统上,系统可能会使用时间戳后缀来区分不同的查询路径,但这种方法存在潜在问题:时间戳可能不够唯一,且在分布式系统中难以精确同步。新版本改用查询参数的哈希 ID 作为表路径的一部分,这种方法具有以下优势:
- 确定性:相同的查询参数总是生成相同的哈希 ID,避免了重复计算
- 唯一性:不同的查询参数几乎不可能产生相同的哈希 ID
- 安全性:哈希值不可逆,不会泄露原始查询参数信息
这一改进影响了三种主要查询类型:
- 快照查询(Snapshot)
- 变更数据捕获查询(CDF)
- 流式查询(Streaming)
错误消息处理的增强
在流式处理场景中,错误处理尤为重要。Delta Sharing 1.3.0 在 EndStreamAction 中增加了对错误消息的支持,这使得:
- 客户端能够更清晰地了解流处理中断的原因
- 系统管理员可以更有效地诊断和解决问题
- 开发者能够构建更健壮的容错机制
这一改进显著提升了流式数据共享的可靠性和可维护性。
Spark 4.0 兼容性修复
随着 Spark 生态系统的演进,Delta Sharing 也在不断适配新版本。1.3.0 版本特别修复了与 Spark 4.0 的列兼容性问题,确保:
- 数据类型转换更加安全可靠
- 模式演化操作在不同版本间保持一致
- 跨版本数据共享无缝进行
这一改进对于计划升级到 Spark 4.0 的用户尤为重要,它消除了潜在的迁移障碍。
技术影响与最佳实践
对于使用 Delta Sharing 的开发者和数据工程师,1.3.0 版本带来了几个值得注意的最佳实践:
- 查询参数管理:现在可以更安全地在查询中包含敏感参数,因为它们会被自动哈希处理
- 错误处理:流式处理应用应该更新以利用新的错误消息功能,实现更精细的错误恢复策略
- 版本规划:计划升级到 Spark 4.0 的团队可以更有信心地进行迁移
Delta Sharing 1.3.0 的这些改进虽然看似技术细节,但它们共同提升了数据共享体验的可靠性和效率,为构建更复杂的数据共享生态系统奠定了基础。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0115
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00