Kysely中高效复用大型向量变量的查询优化技巧
2025-05-19 00:48:45作者:翟萌耘Ralph
在使用Kysely进行PostgreSQL查询时,处理大型向量变量(如AI嵌入向量)可能会遇到性能问题。本文将深入探讨如何优化这类查询,避免重复传递大型参数。
问题背景
在AI应用中,我们经常需要处理高维向量(如384维或768维的嵌入向量)。当这些向量需要多次出现在SQL查询中时,直接重复传递会导致查询语句变得非常庞大,影响性能。
原始查询的问题
原始查询中存在三个主要问题:
- 多次重复传递同一个大型向量参数
- 试图使用多个SELECT语句(PostgreSQL不支持在预处理语句中执行多命令)
- 向量转换函数可能不够高效
优化方案
1. 使用WITH子句(CTE)定义临时变量
PostgreSQL的WITH子句(Common Table Expression)可以让我们定义查询中的临时变量,避免重复:
const definitions = await db.executeQuery(
sql`
WITH embedding_query AS (
SELECT ${vectorToSql(embeddingQ)}::vector AS embedding
)
SELECT
id,
language__id,
entry__id,
1 - (definitions.embedding <=> (SELECT embedding FROM embedding_query)) AS similarity
FROM definitions
WHERE 1 - (definitions.embedding <=> (SELECT embedding FROM embedding_query)) > 0.8
ORDER BY (definitions.embedding <=> (SELECT embedding FROM embedding_query)) ASC
LIMIT 10;`.compile(db)
)
2. 优化向量转换函数
确保向量转换函数高效处理数组:
function vectorToSql(value: number[]): string {
if (!Array.isArray(value)) {
throw new Error('Input must be an array');
}
return `[${value.map(v => Number(v)).join(',')}]`;
}
3. 使用函数封装重复计算
对于重复的向量相似度计算,可以创建PostgreSQL函数:
CREATE OR REPLACE FUNCTION calculate_similarity(vec1 vector, vec2 vector)
RETURNS float AS $$
BEGIN
RETURN 1 - (vec1 <=> vec2);
END;
$$ LANGUAGE plpgsql;
然后在查询中使用:
const definitions = await db.executeQuery(
sql`
WITH embedding_query AS (
SELECT ${vectorToSql(embeddingQ)}::vector AS embedding
)
SELECT
id,
language__id,
entry__id,
calculate_similarity(definitions.embedding, (SELECT embedding FROM embedding_query)) AS similarity
FROM definitions
WHERE calculate_similarity(definitions.embedding, (SELECT embedding FROM embedding_query)) > 0.8
ORDER BY similarity DESC
LIMIT 10;`.compile(db)
)
性能考虑
- 参数绑定:Kysely使用参数化查询,大型向量只会被传递一次
- 索引优化:确保在embedding列上创建了适当的向量索引
- 批量处理:考虑批量处理多个向量查询,减少数据库往返
最佳实践
- 对于频繁使用的向量操作,创建PostgreSQL函数
- 使用CTE(WITH子句)组织复杂查询
- 在应用层缓存常用向量
- 考虑使用专门的向量数据库处理超大规模向量搜索
通过以上优化,可以显著提高包含大型向量参数的查询性能,同时保持代码的清晰和可维护性。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
YY0709-2009医用电气设备资源文件介绍:掌握医疗设备安全标准 intel网卡万能驱动介绍:一键解决所有Intel网卡驱动问题 HFSS计算天线相位中心详解文档——优化天线设计的利器 本科毕业论文-带隙基准电路分析与设计:深度解析与实战应用 MATLAB2016b中文显示乱码解决办法:轻松解决MATLAB中文乱码问题 设计师的优选SourceInsight4.0养眼主题:舒适代码编辑新体验 IEEE标准电力系统暂态数据交换通用格式COMTRADE资源文件:项目推荐文章 java-ssm网上购物系统毕业设计程序:高效便捷的网上购物解决方案 高斯投影3度带与6度带转换工具:助您轻松实现坐标转换 深度解析《代码随想录知识星球精华-大厂面试八股文v1.1.pdf》:求职者的面试宝典
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134