【亲测免费】 JAAD数据集注解处理指南
2026-01-22 04:33:17作者:申梦珏Efrain
项目介绍
JAAD(Joint Attention in Autonomous Driving) 是一个专注于自动驾驶领域中行人联合注意力的数据集。该数据集包含了丰富的视频片段,每个片段都附带有详细的注解信息,包括时间、天气、地点以及行人行为等,特别强调了行人的行为标注,旨在支持自动驾驶技术中对行人交互行为的理解和预测。数据集中,行人被分类为具有行为注解的行人、旁观者和人群群体,并且提供了XML格式的注解文件与Python接口,便于开发者进行数据访问和分析。
项目快速启动
环境准备
确保你的开发环境已经配置了Python 3.5或更高版本,并安装以下依赖库:
pip install opencv-python numpy scikit-learn
下载数据集
首先,你需要下载JAAD数据集的视频剪辑,可以通过运行脚本或手动从提供的链接下载:
# 使用脚本自动下载
./download_clips.sh
# 或手动从GitHub或其他指定源下载并解压至相应目录
安装及使用
-
克隆项目
git clone https://github.com/ykotseruba/JAAD.git -
转换视频为图像帧 进入项目根目录后,你可以通过调用Python接口来提取视频帧。
from jaad_data import JAAD jaad_path = '<your_jaad_dataset_path>' # 替换为实际数据集路径 imdb = JAAD(data_path=jaad_path) imdb.extract_and_save_images()
这将会在项目中创建一个images文件夹,其中包含按视频ID分组的图片。
应用案例和最佳实践
在一个典型的自动驾驶研究场景中,利用JAAD数据集,可以进行如下实践活动:
- 行为识别模型训练:基于提供的注解,训练模型识别行人在过马路前的行为,如寻找时机、观察交通灯等。
- 视线估计:分析行人头部方向和车辆的关系,模拟车辆辅助系统的视线跟踪功能。
- 场景理解增强:结合天气、时间等元数据,改进自动驾驶系统在特定环境下的决策能力。
示例代码片段:加载数据并处理
from jaad_data import JAAD
import cv2
jaad_path = '<dataset_path>'
imdb = JAAD(data_path=jaad_path)
for vid in imdb.videos:
for frame in vid.frames:
img_path = f"{jaad_path}/images/{vid.id}/{frame.id}.png"
image = cv2.imread(img_path)
# 假设你想展示某一特定行人的框
for bbox in frame.ped_annotations:
pt1 = (bbox.x1, bbox.y1)
pt2 = (bbox.x2, bbox.y2)
cv2.rectangle(image, pt1, pt2, (255, 0, 0), 2)
cv2.imshow("Frame", image)
if cv2.waitKey(1) == ord('q'):
break
cv2.destroyAllWindows()
典型生态项目
虽然JAAD本身是一个独立的数据集项目,但它激励了许多相关领域的研究发展,例如自动驾驶车辆的安全性评估、行人意图预测系统、以及机器视觉中的目标检测和行为识别算法。这些研究通常涉及深度学习框架如TensorFlow或PyTorch,开发者会利用JAAD的数据来训练和测试他们的模型,进而推动智能交通系统和自动驾驶技术的进步。
以上指南提供了一个简单的起点,帮助你开始探索和利用JAAD数据集。随着深入研究,你可以发现更多创新的应用方法,并为自动驾驶技术贡献力量。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0123
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
492
3.62 K
Ascend Extension for PyTorch
Python
300
332
暂无简介
Dart
740
178
React Native鸿蒙化仓库
JavaScript
297
346
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
866
474
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
295
123
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
20
仓颉编程语言测试用例。
Cangjie
43
870