ModelContextProtocol C SDK 中的人工审批工具调用实现
2025-07-08 07:28:43作者:袁立春Spencer
概念理解
ModelContextProtocol(MCP)是一个协议标准,它允许AI模型通过工具(Tools)扩展其能力。在MCP框架中,工具是服务器向客户端暴露的功能接口,AI模型可以自动调用这些工具,但通常需要人工审批这一关键环节。
人工审批的必要性
在实际应用中,自动化的工具调用可能存在风险,例如:
- 执行不可逆的操作(如删除数据)
- 涉及敏感信息处理
- 需要业务逻辑验证
- 可能产生费用或资源消耗的操作
因此,MCP建议在工具调用流程中加入人工审批环节,这也是企业级AI应用的最佳实践。
实现模式分析
在C# SDK中实现人工审批工具调用,核心流程可分为三个步骤:
1. 工具注册阶段
首先需要从MCP服务器获取可用工具列表,并将这些工具注册到LLM(大语言模型)或Agent框架中。这一步骤确保了模型知道有哪些工具可用及其功能描述。
2. 限制自动调用
大多数LLM库默认会自动执行检测到的工具调用。为实现人工审批,需要显式限制这一特性,改为手动处理工具调用请求。
3. 审批流程实现
当模型返回工具调用请求时,系统应:
- 展示工具调用详情(函数名、参数等)
- 等待用户确认
- 根据用户决定执行或跳过调用
- 将结果反馈给模型继续对话
代码实现示例
以下是使用基础IChatClient实现审批流程的核心代码逻辑:
// 获取可用工具列表
var tools = await mcpClient.ListToolsAsync();
// 准备聊天客户端和消息历史
IChatClient client = ...;
var messageHistory = new List<ChatMessage>();
// 获取模型响应
var response = await chatClient.GetResponseAsync(messageHistory, new() {
Tools = [.. tools]
});
// 处理工具调用请求
if (response.FinishReason == ChatFinishReason.ToolCalls)
{
foreach (var message in response.Messages)
{
messageHistory.Add(message);
Console.WriteLine($" {message}");
IList<FunctionResultContent> functionResults = [];
foreach (var call in message.Contents.OfType<FunctionCallContent>())
{
// 显示调用详情供审批
Console.WriteLine("----");
Console.WriteLine($"函数名: {call.Name}");
Console.WriteLine($"参数: {JsonSerializer.Serialize(call.Arguments)}");
Console.WriteLine("----");
// 获取用户审批
Console.Write("是否执行此函数? (是/否): ");
var userInput = Console.ReadLine();
if (!string.Equals(userInput, "是", StringComparison.OrdinalIgnoreCase))
{
Console.WriteLine("跳过函数调用。");
functionResults.Add(new FunctionResultContent(
call.CallId,
"用户未批准此函数调用。"
));
continue;
}
// 执行批准的工具调用
var result = await mcpClient.CallToolAsync(
call.Name,
call.Arguments!.ToImmutableDictionary()
);
functionResults.Add(new FunctionResultContent(call.CallId, result));
Console.WriteLine($" 结果: {result.Content[0].Text}");
}
// 将工具调用结果加入消息历史
messageHistory.Add(new ChatMessage(ChatRole.Tool, [..functionResults]));
}
}
与不同框架的集成
根据使用的具体AI框架不同,实现方式会有所差异:
Semantic Kernel集成
在Semantic Kernel中,可以通过以下方式实现:
- 使用Kernel.ImportFunctionsFromTool方法注册MCP工具
- 设置AIPromptExecutionSettings.ToolCallBehavior为手动模式
- 在FunctionCall事件中实现审批逻辑
原生AI客户端
使用原生客户端时,可以:
- 在ChatCompletionOptions中指定工具定义
- 检查返回消息中的ToolCalls集合
- 对每个工具调用请求用户确认
最佳实践建议
- 清晰的用户界面:审批界面应清晰显示工具调用的目的和参数
- 审批记录:记录所有审批决策,便于审计
- 默认安全:未明确批准时应默认拒绝
- 批量审批:对多个相关工具调用提供批量审批选项
- 审批超时:设置审批超时机制,避免长时间等待
总结
在ModelContextProtocol的C# SDK中实现人工审批的工具调用流程,是构建可信赖AI应用的重要环节。通过合理的架构设计和清晰的用户交互,可以在保持AI自动化优势的同时,确保关键操作的安全可控。开发者应根据具体应用场景和使用的AI框架,灵活调整实现细节,找到最适合的审批流程设计方案。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
238
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
671
156
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
261
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
859
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217