Neo4j JDBC 驱动项目教程
1. 项目介绍
Neo4j JDBC 驱动是一个开源项目,旨在为 Java 生态系统中的平台和工具提供与 Neo4j 图数据库的集成。该项目由 Neo4j 官方支持,并遵循 Apache 2.0 许可证。Neo4j JDBC 驱动版本 6 是一个独立的驱动程序,不依赖于 Neo4j 的通用 Java 驱动程序,而是直接基于 Bolt 协议实现 JDBC 规范。
该驱动的主要目标是:
- 实现 JDBC 规范,以便与现有的 Java 工具和平台集成。
- 提供从 SQL 到 Cypher 的翻译功能,使得熟悉 SQL 的用户可以更容易地使用 Neo4j。
- 支持 Neo4j AuraDB 和任何 Neo4j 5 集群解决方案,包括 SSL 和多种认证模式。
2. 项目快速启动
2.1 下载与安装
首先,您可以通过 Maven 或 Gradle 将 Neo4j JDBC 驱动添加到您的项目中。
Maven 依赖:
<dependency>
<groupId>org.neo4j</groupId>
<artifactId>neo4j-jdbc-full-bundle</artifactId>
<version>6.0.0-M05</version>
</dependency>
Gradle 依赖:
dependencies {
implementation 'org.neo4j:neo4j-jdbc-full-bundle:6.0.0-M05'
}
2.2 快速启动示例
以下是一个简单的示例,展示如何使用 Neo4j JDBC 驱动连接到 Neo4j 数据库并执行查询。
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.Statement;
public class Neo4jJDBCExample {
public static void main(String[] args) {
String url = "jdbc:neo4j:bolt://localhost:7687";
String user = "neo4j";
String password = "password";
try (Connection conn = DriverManager.getConnection(url, user, password)) {
Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery("MATCH (n:Person) RETURN n.name");
while (rs.next()) {
System.out.println(rs.getString("n.name"));
}
} catch (Exception e) {
e.printStackTrace();
}
}
}
3. 应用案例和最佳实践
3.1 集成 ETL 工具
Neo4j JDBC 驱动可以与各种 ETL(Extract, Transform, Load)工具集成,如 Apache NiFi、KNime 和 Tableau。通过 JDBC 接口,这些工具可以直接从 Neo4j 数据库中提取数据,进行转换和加载到其他系统中。
3.2 使用 SQL 查询 Neo4j
虽然 Neo4j 是一个图数据库,但它支持通过 JDBC 驱动使用 SQL 进行查询。驱动内置了一个 SQL 到 Cypher 的翻译器,可以将 SQL 查询转换为 Cypher 查询,从而利用 Neo4j 的图数据库功能。
String sqlQuery = "SELECT p.name FROM Person p";
String cypherQuery = conn.nativeSQL(sqlQuery);
ResultSet rs = stmt.executeQuery(cypherQuery);
3.3 在 Jakarta EE 中使用
Neo4j JDBC 驱动可以与 Jakarta EE 生态系统集成,特别是与事务管理器一起使用。这使得开发者可以在熟悉的环境中使用 Neo4j,而无需重写现有的应用程序。
4. 典型生态项目
4.1 Apache NiFi
Apache NiFi 是一个强大的数据流工具,支持通过 JDBC 连接到各种数据库。Neo4j JDBC 驱动可以与 NiFi 集成,实现从 Neo4j 数据库中提取数据并进行流处理。
4.2 KNime
KNime 是一个开源的数据分析平台,支持通过 JDBC 连接到数据库。Neo4j JDBC 驱动可以与 KNime 集成,使得数据科学家可以直接在 KNime 中分析 Neo4j 数据库中的数据。
4.3 Tableau
Tableau 是一个流行的商业智能工具,支持通过 JDBC 连接到数据库。Neo4j JDBC 驱动可以与 Tableau 集成,使得业务分析师可以使用 Tableau 的强大可视化功能来分析 Neo4j 数据库中的数据。
通过这些集成,Neo4j JDBC 驱动为开发者提供了灵活的方式来利用 Neo4j 的图数据库功能,同时保持与现有工具和平台的兼容性。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









