Vxe-Table 4.10.6版本发布:虚拟滚动重构与交互增强
项目简介
Vxe-Table是一个基于Vue.js的高性能表格组件库,专注于提供企业级的数据展示与交互解决方案。它以轻量级、高性能和丰富的功能著称,特别适合处理大数据量场景下的表格渲染需求。最新发布的4.10.6版本带来了多项重要改进,特别是在虚拟滚动性能和交互体验方面的优化。
核心更新内容
虚拟滚动重构
本次版本对虚拟滚动机制进行了彻底重构,显著提升了大数据量场景下的渲染性能。虚拟滚动是Vxe-Table的核心特性之一,它通过只渲染可视区域内的行和列来大幅减少DOM节点数量,从而保证在数万甚至数十万数据量下依然保持流畅的交互体验。
重构后的虚拟滚动机制更加智能,能够更精确地计算可视区域的范围,减少不必要的渲染操作。同时,新的实现方式也降低了内存占用,使得长时间运行的页面更加稳定。
参数优化与兼容性处理
4.10.6版本对部分参数进行了优化调整,并提供了向下兼容的方案:
- 将
scroll-x和scroll-y参数分别替换为更灵活的virtual-x-config和virtual-y-config,新参数提供了更细粒度的虚拟滚动配置选项 - 表格样式相关参数如
padding、row-config.height等统一整合到cell-config配置对象中,使样式管理更加集中和一致 - 事件命名更加规范,如
resizable-change事件拆分为row-resizable-change和column-resizable-change,分别处理行和列的尺寸调整事件
树形结构改进
针对树形表格的拖拽功能进行了多项修复和增强:
- 修复了拖拽节点成为子节点无效的问题
- 解决了拖拽后数据结构可能出现的错误
- 优化了树形连接线的显示逻辑,确保在不同层级和展开状态下都能正确显示
- 新增了
dragToChildMethod回调方法,允许开发者自定义拖拽成为子节点的验证逻辑
新增功能特性
-
排序配置增强:
- 新增
allowClear选项控制是否允许清除排序 - 新增
allowBtn选项控制是否显示排序按钮
- 新增
-
尺寸调整优化:
- 新增
isDblclickAutoHeight支持双击自动调整行高 - 新增
isSyncAutoWidth和isSyncAutoHeight实现尺寸同步 - 新增
isAllRowDrag和isAllColumnDrag支持全行/全列拖拽
- 新增
-
区域选择扩展:
- 新增
extendDirection控制扩展方向 - 新增
beforeExtendMethod和afterExtendMethod扩展前后回调
- 新增
-
行高管理:
- 新增
setRowHeightConf和getRowHeightConf管理行高配置 - 新增
setRowHeight和getRowHeight动态调整行高
- 新增
性能优化建议
基于新版本的特性,开发者可以采取以下策略进一步提升表格性能:
-
对于大数据量场景,合理配置
virtual-x-config和virtual-y-config参数,根据实际业务需求调整虚拟滚动的缓冲区大小 -
使用新增的行高管理API动态调整行高,避免不必要的全局重渲染
-
在树形表格中,利用优化后的拖拽API实现更流畅的层级调整体验
-
通过
scrollbar-config精细控制滚动条行为,平衡性能与用户体验
总结
Vxe-Table 4.10.6版本通过重构虚拟滚动核心机制和增强交互功能,进一步巩固了其作为高性能表格解决方案的地位。新版本不仅修复了多个影响用户体验的问题,还提供了更多灵活的配置选项和API,使开发者能够更好地控制表格的展示和行为。对于正在使用或考虑使用Vxe-Table的项目,升级到4.10.6版本将获得更流畅的性能和更丰富的功能支持。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00