PyTorch Lightning在SLURM集群单节点多任务并行训练时的日志记录问题解析
2025-05-05 09:28:05作者:韦蓉瑛
问题背景
在使用PyTorch Lightning框架进行深度学习模型训练时,研究人员经常需要在SLURM集群环境下运行多个训练任务。一个典型场景是在单个节点上并行运行多个独立训练任务,每个任务使用不同的GPU设备。然而,在这种配置下,用户可能会遇到日志记录异常的问题。
问题现象
当在单个SLURM节点上启动8个独立训练任务(每个任务使用1个GPU)时,会出现以下现象:
- 所有任务都能正常创建日志目录和配置文件
- 只有任务0(slurm_0)的目录中包含TensorBoard日志文件(events.out)和超参数文件(hparams.yaml)
- 其他任务的日志目录中仅包含config.yaml文件
- 调试发现,非0任务的LightningModule.logger._experiment属性为None,而任务0的该属性正常指向SummaryWriter对象
技术分析
根本原因
这个问题源于PyTorch Lightning框架内部的rank零检查机制。在TensorBoardLogger的实现中,框架会检查当前进程是否为全局rank零,只有满足条件才会初始化SummaryWriter。在SLURM环境下,即使使用SingleDeviceStrategy策略,当通过srun启动多个任务时,框架仍会将它们视为分布式训练环境的一部分。
SLURM配置的影响
用户使用的SLURM提交脚本配置如下:
- 1个节点
- 每个节点8个任务(--ntasks-per-node=8)
- 每个任务8个CPU核心和1个GPU
这种配置通常被PyTorch Lightning解释为单个分布式训练作业,而非多个独立作业。因此框架会执行rank检查,导致只有"主"任务能够初始化日志记录器。
解决方案
推荐解决方案
通过显式指定LightningEnvironment插件来覆盖默认的SLURM环境检测:
from lightning.pytorch.plugins import LightningEnvironment
trainer = Trainer(
plugins=LightningEnvironment(), # 强制使用非SLURM环境
strategy="lightning.pytorch.strategies.SingleDeviceStrategy",
devices=[f"cuda:{slurm_id}"], # 使用SLURM任务ID指定设备
logger=TensorBoardLogger(
save_dir=".",
name="lightning_logs",
version=f"job_{slurm_job_id}",
sub_dir=f"slurm_{slurm_id}"
)
)
使用LightningCLI时的配置
如果使用LightningCLI,可以通过命令行参数传递插件配置:
--trainer.plugins.class_path=lightning.pytorch.plugins.environments.LightningEnvironment
最佳实践建议
- 明确区分并行模式:要清楚区分"单节点多GPU分布式训练"和"单节点多个独立训练任务"两种场景
- 环境隔离:每个独立训练任务应有完全隔离的环境配置
- 资源分配:确保每个任务有独立的计算资源(CPU、GPU、内存等)
- 日志管理:为每个任务配置独立的日志目录和版本号
总结
在SLURM集群环境下使用PyTorch Lightning进行多任务并行训练时,理解框架的环境检测机制至关重要。通过正确配置LightningEnvironment插件,可以解决日志记录异常的问题,确保每个独立训练任务都能正确记录训练过程和结果。这种解决方案不仅适用于TensorBoard日志,也适用于其他类型的日志记录器。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
329
391
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
162
暂无简介
Dart
764
189
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
746
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
React Native鸿蒙化仓库
JavaScript
302
350