Apache Arrow-RS项目中的Parquet二进制数据写入与读取问题分析
在Apache Arrow-RS项目中,开发人员发现了一个关于Parquet格式二进制数据处理的边界情况问题。当使用arrow-rs库写入包含大量二进制数据的Parquet文件时,如果每行数据达到或超过8,388,855字节,使用pyarrow读取这些文件时会出现反序列化失败的问题。
问题现象
具体表现为:当使用arrow-rs写入包含大尺寸二进制数据的Parquet文件后,尝试通过pyarrow读取时,会抛出"Couldn't deserialize thrift: No more data to read. Deserializing page header failed"的错误。值得注意的是,这个问题仅出现在pyarrow读取时,而使用arrow-rs自身或DuckDB等其他工具读取这些文件则完全正常。
技术背景
Parquet格式使用Thrift进行序列化,在存储二进制数据时会生成相应的统计信息。这些统计信息默认情况下会包含完整的二进制数据摘要,当数据量很大时,会导致统计信息头部变得异常庞大。Pyarrow在实现中对Thrift反序列化缓冲区大小有限制,当遇到过大的统计信息头部时就会失败。
问题根源
经过深入分析,发现问题的核心在于两个方面:
-
arrow-rs在生成页面级统计信息时,没有正确应用statistics_truncate_length参数,导致即使设置了截断长度,统计信息仍然会包含完整的二进制数据。
-
Pyarrow对Thrift反序列化缓冲区大小的限制较为严格,无法处理超过约8MB的统计信息头部。
解决方案
项目团队通过以下方式解决了这个问题:
-
修复了arrow-rs中页面统计信息截断功能的实现,确保statistics_truncate_length参数能够正确生效。
-
建议在写入大尺寸二进制数据时,合理设置统计信息截断长度,避免生成过大的统计信息头部。
-
对于默认配置,团队正在考虑将statistics_truncate_length的默认值设置为64字节,以平衡统计信息的实用性和文件兼容性。
性能考量
测试数据显示,启用页面级统计信息(PAGE)会使文件大小显著增加(约3倍),这是因为除了常规统计信息外,还会写入页面索引数据。团队已经注意到这一点,并计划在未来版本中优化这一行为。
最佳实践
对于需要处理大尺寸二进制数据的应用,建议:
-
对于不需要精确统计的场景,考虑禁用统计信息或仅启用块级统计(CHUNK)。
-
如需页面级统计,务必设置合理的statistics_truncate_length值(如1024字节)。
-
在跨语言/工具使用Parquet文件时,提前测试不同工具间的兼容性。
这个问题及其解决方案不仅提高了arrow-rs与pyarrow的兼容性,也为大数据处理中二进制数据的存储优化提供了重要参考。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00