Apache Arrow-RS项目中的Parquet二进制数据写入与读取问题分析
在Apache Arrow-RS项目中,开发人员发现了一个关于Parquet格式二进制数据处理的边界情况问题。当使用arrow-rs库写入包含大量二进制数据的Parquet文件时,如果每行数据达到或超过8,388,855字节,使用pyarrow读取这些文件时会出现反序列化失败的问题。
问题现象
具体表现为:当使用arrow-rs写入包含大尺寸二进制数据的Parquet文件后,尝试通过pyarrow读取时,会抛出"Couldn't deserialize thrift: No more data to read. Deserializing page header failed"的错误。值得注意的是,这个问题仅出现在pyarrow读取时,而使用arrow-rs自身或DuckDB等其他工具读取这些文件则完全正常。
技术背景
Parquet格式使用Thrift进行序列化,在存储二进制数据时会生成相应的统计信息。这些统计信息默认情况下会包含完整的二进制数据摘要,当数据量很大时,会导致统计信息头部变得异常庞大。Pyarrow在实现中对Thrift反序列化缓冲区大小有限制,当遇到过大的统计信息头部时就会失败。
问题根源
经过深入分析,发现问题的核心在于两个方面:
-
arrow-rs在生成页面级统计信息时,没有正确应用statistics_truncate_length参数,导致即使设置了截断长度,统计信息仍然会包含完整的二进制数据。
-
Pyarrow对Thrift反序列化缓冲区大小的限制较为严格,无法处理超过约8MB的统计信息头部。
解决方案
项目团队通过以下方式解决了这个问题:
-
修复了arrow-rs中页面统计信息截断功能的实现,确保statistics_truncate_length参数能够正确生效。
-
建议在写入大尺寸二进制数据时,合理设置统计信息截断长度,避免生成过大的统计信息头部。
-
对于默认配置,团队正在考虑将statistics_truncate_length的默认值设置为64字节,以平衡统计信息的实用性和文件兼容性。
性能考量
测试数据显示,启用页面级统计信息(PAGE)会使文件大小显著增加(约3倍),这是因为除了常规统计信息外,还会写入页面索引数据。团队已经注意到这一点,并计划在未来版本中优化这一行为。
最佳实践
对于需要处理大尺寸二进制数据的应用,建议:
-
对于不需要精确统计的场景,考虑禁用统计信息或仅启用块级统计(CHUNK)。
-
如需页面级统计,务必设置合理的statistics_truncate_length值(如1024字节)。
-
在跨语言/工具使用Parquet文件时,提前测试不同工具间的兼容性。
这个问题及其解决方案不仅提高了arrow-rs与pyarrow的兼容性,也为大数据处理中二进制数据的存储优化提供了重要参考。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00