推荐开源项目:Holistic Trace Analysis - 深度学习性能优化的利器
2024-06-08 22:40:02作者:滑思眉Philip
在深度学习领域,分布式训练的工作负载性能优化是一个至关重要的问题。为此,Facebook Research推出了Holistic Trace Analysis(HTA),这是一个强大的性能分析工具,专为识别和解决分布式训练中的瓶颈设计。通过与PyTorch Profiler(又称Kineto)集成,HTA能够提供全面而深入的系统级洞察。
项目介绍
Holistic Trace Analysis(HTA)的核心功能在于分析通过PyTorch Profiler收集的运行时痕迹,以揭示GPU在计算、通信、内存事件和空闲时间上的分布情况。通过这些信息,开发者可以精确地定位性能瓶颈,进而优化他们的分布式训练工作负载。
项目技术分析
HTA采用了先进的数据分析算法,提供了以下关键特性:
- 时间分解:显示各GPU在计算、通信、内存操作以及空闲状态上所花费的时间。
- 内核分解:找出每个rank中最耗时的内核。
- 内核时长分布:统计最长内核在不同rank上的平均执行时间。
- 空闲时间分解:详细分析GPU空闲时间的原因。
- 通信与计算重叠度量:评估通信任务与计算任务的并行程度。
- 频繁CUDA内核模式:发现由特定PyTorch或自定义操作启动的最常见CUDA内核。
- CUDA内核启动统计:对短时间、长时间内核和过度启动内核的分布进行分析。
- 增强计数器:提供关于内存带宽利用率和CUDA流中待处理操作数量的见解。
- 痕迹对比:比较两个或多个运行的差异,帮助识别性能变化。
- CUPTI计数器分析:实验性API,用于获取GPU性能计数器,支持进行屋顶线分析和内核优化。
应用场景
HTA适用于任何需要优化深度学习模型训练速度的环境,特别是在大型分布式系统中。通过对训练过程的详细分析,研究者和工程师能更好地理解其系统的瓶颈,并针对性地调整代码或硬件配置,提高整体效率。
项目特点
- 深度分析:HTA提供的多种分析维度,从时间到资源利用,无一遗漏,让性能优化有的放矢。
- 直观易用:支持Jupyter Notebook,可直接在交互环境中进行分析,结果可视化清晰明了。
- 灵活扩展:开放源码且易于贡献,允许社区添加新功能或扩展已有的分析方法。
- 跨平台:支持Linux和Mac操作系统,兼容Python 3.8以上版本。
- 紧密集成:与PyTorch Profiler紧密配合,为PyTorch用户提供无缝体验。
要开始使用HTA,请参照项目文档安装和配置环境,然后在你的数据集上试跑示例分析,探索如何提升你的分布式训练性能吧!
不要错过这个强大的性能分析工具,让我们一起迈向更高效的深度学习世界!
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
Ascend Extension for PyTorch
Python
240
276
暂无简介
Dart
696
163
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
269
328
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
674
仓颉编译器源码及 cjdb 调试工具。
C++
138
869