【亲测免费】 SegNeXt 项目使用教程
2026-01-15 17:17:32作者:明树来
1. 项目介绍
SegNeXt 是一个用于语义分割的开源项目,由 Visual-Attention-Network 团队开发。该项目在 NeurIPS 2022 上发表,旨在重新思考卷积注意力设计在语义分割中的应用。SegNeXt 提供了官方的 PyTorch 实现,包括训练和评估代码以及预训练模型。
主要特点
- 重新设计的卷积注意力机制:SegNeXt 通过重新设计卷积注意力机制,显著提升了语义分割的性能。
- 多平台支持:除了 PyTorch 实现外,还提供了 Jittor 版本的实现。
- 丰富的预训练模型:项目提供了多个预训练模型,适用于不同的应用场景。
2. 项目快速启动
安装依赖
首先,确保你已经安装了必要的依赖库。可以通过以下命令安装:
pip install timm
然后,克隆项目并安装:
git clone https://github.com/Visual-Attention-Network/SegNeXt.git
cd SegNeXt
python setup.py develop
训练模型
使用默认配置进行模型训练:
./tools/dist_train.sh /path/to/config 8
模型评估
评估训练好的模型:
./tools/dist_test.sh /path/to/config /path/to/checkpoint_file 8 --eval mIoU
计算 FLOPs
安装 torchprofile 并计算模型的 FLOPs:
pip install torchprofile
bash tools/get_flops.py /path/to/config --shape 512 512
3. 应用案例和最佳实践
应用案例
SegNeXt 在多个数据集上表现出色,特别是在 Pascal VOC 和 ADE20K 数据集上。以下是一些典型的应用案例:
- Pascal VOC 数据集:SegNeXt 在 Pascal VOC 数据集上取得了 Rank 1 的成绩,展示了其在语义分割任务中的强大性能。
- ADE20K 数据集:在 ADE20K 数据集上,SegNeXt 的 mIoU 达到了 51.0/52.1,证明了其在复杂场景中的有效性。
最佳实践
- 数据预处理:确保输入图像的分辨率和格式符合模型要求。
- 模型微调:根据具体任务对模型进行微调,以获得更好的性能。
- 多尺度评估:在评估时使用多尺度评估(ms)可以进一步提升模型的性能。
4. 典型生态项目
MMSegmentation
SegNeXt 的实现基于 MMSegmentation 框架,MMSegmentation 是一个强大的语义分割工具包,提供了丰富的模型和工具。
Jittor
对于使用 Jittor 的用户,Jittor 团队提供了 SegNeXt 的 Jittor 版本,地址为:Jittor/JSeg。
Timm
Timm 是一个用于图像模型的库,提供了大量的预训练模型和工具,SegNeXt 使用了 Timm 中的模型作为基础。
通过这些生态项目,用户可以更方便地集成和扩展 SegNeXt 的功能。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
535
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178