cattrs v25.1.0 版本发布:类型转换库的重大更新
cattrs 是一个强大的 Python 类型转换库,它能够自动在复杂的数据结构和简单数据类型(如字典、列表等)之间进行转换。这个库特别适合处理 attrs 类、dataclass 以及各种 Python 类型注解(如 TypedDict、NamedTuple 等),大大简化了序列化和反序列化的工作。
核心变更与改进
更早的错误检测机制
本次版本中,转换器现在会在创建钩子时就抛出 StructureHandlerNotFoundError 错误,而不是等到实际使用钩子时才抛出。这一改变有助于开发者更早地发现缺少钩子的问题,避免在运行时才遇到错误。
对于需要保持旧行为的用户,可以通过调整默认结构钩子回退工厂来恢复原有行为。
全面支持 typing.Self
新版本增加了对 typing.Self 的全面支持,包括:
- attrs 类
- dataclasses
- TypedDicts
- 使用 dict 工厂的 NamedTuple
这一特性在处理返回类自身实例的方法时特别有用,例如构建器模式或链式调用场景。
PEP 695 类型别名增强
现在可以直接使用 BaseConverter.register_structure_hook 和 BaseConverter.register_unstructure_hook 来注册 PEP 695 类型别名的钩子,而不必再使用 register_structure_hook_func 方法。同时,新版本还增加了对泛型 PEP 695 类型别名的支持。
新增 defaultdict 支持
cattrs 现在默认支持一些 defaultdict 类型,并提供了 is_defaultdict 和 defaultdict_structure_factory 工具函数,方便开发者处理这种常见的数据结构。
性能优化
枚举处理优化
多个预配置转换器(包括 bson、stdlib JSON、cbor2、msgpack、msgspec、orjson 和 ujson)现在会跳过对 int 和 str 枚举的解构,让底层库以更高效率处理这些类型。同时,包含枚举的 Literal 类型现在也能被正确解构。
字典处理改进
预配置转换器现在能够正确处理带有字面量键的字典,提高了这类常见数据结构的处理效率。
msgspec JSON 转换器优化
对于包含私有属性的 dataclass,msgspec JSON 预配置转换器现在能以更高效率进行处理。
其他重要改进
- 标记联合策略增强:现在也支持联合类型的类型别名
- TypedDict 验证改进:从无效输入构造 TypedDict 时会正确抛出 ClassValidationError
- 泛型类支持:include_subclasses策略现在能正确处理泛型父类
- 类型注解改进:Converter.copy和BaseConverter.copy现在正确标注为返回Self类型
- Python 版本支持:新增 Python 3.13 支持,同时放弃对已停止维护的 Python 3.8 的支持
内部重构
- 用 SimpleStructureHook替换了MappingStructureFn
- 将 Converter.__init__.unstruct_collection_overrides的类型从Callable改为Mapping[type, UnstructureHook]
- 采用了 Contributor Covenant 行为准则,与 attrs 项目保持一致
总结
cattrs v25.1.0 带来了多项重要改进和新特性,特别是在类型支持、错误处理和性能优化方面。这些变化使得 cattrs 在处理复杂类型转换时更加健壮和高效,同时也提供了更好的开发者体验。对于正在使用或考虑使用类型转换功能的 Python 开发者来说,这个版本值得关注和升级。
 PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00 PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00 openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
 HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00 HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
 AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03 AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
 Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00 Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
 GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00 GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00 Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
项目优选
 docs
docs kernel
kernel flutter_flutter
flutter_flutter ops-math
ops-math pytorch
pytorch cangjie_tools
cangjie_tools ohos_react_native
ohos_react_native RuoYi-Vue3
RuoYi-Vue3 cangjie_compiler
cangjie_compiler Cangjie-Examples
Cangjie-Examples