cattrs v25.1.0 版本发布:类型转换库的重大更新
cattrs 是一个强大的 Python 类型转换库,它能够自动在复杂的数据结构和简单数据类型(如字典、列表等)之间进行转换。这个库特别适合处理 attrs 类、dataclass 以及各种 Python 类型注解(如 TypedDict、NamedTuple 等),大大简化了序列化和反序列化的工作。
核心变更与改进
更早的错误检测机制
本次版本中,转换器现在会在创建钩子时就抛出 StructureHandlerNotFoundError 错误,而不是等到实际使用钩子时才抛出。这一改变有助于开发者更早地发现缺少钩子的问题,避免在运行时才遇到错误。
对于需要保持旧行为的用户,可以通过调整默认结构钩子回退工厂来恢复原有行为。
全面支持 typing.Self
新版本增加了对 typing.Self 的全面支持,包括:
- attrs 类
- dataclasses
- TypedDicts
- 使用 dict 工厂的 NamedTuple
这一特性在处理返回类自身实例的方法时特别有用,例如构建器模式或链式调用场景。
PEP 695 类型别名增强
现在可以直接使用 BaseConverter.register_structure_hook 和 BaseConverter.register_unstructure_hook 来注册 PEP 695 类型别名的钩子,而不必再使用 register_structure_hook_func 方法。同时,新版本还增加了对泛型 PEP 695 类型别名的支持。
新增 defaultdict 支持
cattrs 现在默认支持一些 defaultdict 类型,并提供了 is_defaultdict 和 defaultdict_structure_factory 工具函数,方便开发者处理这种常见的数据结构。
性能优化
枚举处理优化
多个预配置转换器(包括 bson、stdlib JSON、cbor2、msgpack、msgspec、orjson 和 ujson)现在会跳过对 int 和 str 枚举的解构,让底层库以更高效率处理这些类型。同时,包含枚举的 Literal 类型现在也能被正确解构。
字典处理改进
预配置转换器现在能够正确处理带有字面量键的字典,提高了这类常见数据结构的处理效率。
msgspec JSON 转换器优化
对于包含私有属性的 dataclass,msgspec JSON 预配置转换器现在能以更高效率进行处理。
其他重要改进
- 标记联合策略增强:现在也支持联合类型的类型别名
- TypedDict 验证改进:从无效输入构造 TypedDict 时会正确抛出
ClassValidationError - 泛型类支持:
include_subclasses策略现在能正确处理泛型父类 - 类型注解改进:
Converter.copy和BaseConverter.copy现在正确标注为返回Self类型 - Python 版本支持:新增 Python 3.13 支持,同时放弃对已停止维护的 Python 3.8 的支持
内部重构
- 用
SimpleStructureHook替换了MappingStructureFn - 将
Converter.__init__.unstruct_collection_overrides的类型从Callable改为Mapping[type, UnstructureHook] - 采用了 Contributor Covenant 行为准则,与 attrs 项目保持一致
总结
cattrs v25.1.0 带来了多项重要改进和新特性,特别是在类型支持、错误处理和性能优化方面。这些变化使得 cattrs 在处理复杂类型转换时更加健壮和高效,同时也提供了更好的开发者体验。对于正在使用或考虑使用类型转换功能的 Python 开发者来说,这个版本值得关注和升级。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00