Matomo SDK for Android 安装与配置指南
1. 项目基础介绍
Matomo SDK for Android 是一个开源的追踪分析工具,它允许开发者将 Android 应用程序的数据发送到 Matomo 分析服务器。这个 SDK 支持多种设备,包括手机、平板电脑和 Fire TV 设备。它提供了缓存和离线支持、优雅的重连处理、仅 WiFi 模式等功能,能够帮助开发者更好地理解用户行为。
主要编程语言:Java 和 Kotlin。
2. 关键技术和框架
- Matomo HTTP API:用于与 Matomo 服务器进行数据交互的接口。
- TrackerBuilder:用于创建 Tracker 实例的构建器。
- TrackHelper:简化了事件追踪的辅助类。
- Gradle:Android 项目构建和依赖管理的自动化工具。
3. 安装和配置准备工作
在开始安装之前,请确保您已经安装以下环境和工具:
- Android Studio
- JDK 1.8 或更高版本
- Android SDK
确保您的 build.gradle 文件已经配置了正确的版本。
安装步骤
步骤 1:添加 JitPack 仓库
打开您的项目的 build.gradle 文件,在 allprojects 下的 repositories 中添加以下代码:
allprojects {
repositories {
google()
jcenter()
maven { url 'https://jitpack.io' }
}
}
步骤 2:添加依赖
在您的应用模块的 build.gradle 文件中,添加以下依赖:
dependencies {
implementation 'com.github.matomo-org:matomo-sdk-android:latest-version'
}
请注意将 'latest-version' 替换为实际的最新版本号。
步骤 3:初始化 Tracker
创建一个自定义的 Application 类,继承自 Application 并重写 getTracker 方法,如下:
import org.matomo.sdk.TrackerBuilder;
public class YourApplication extends Application {
private Tracker tracker;
@Override
public void onCreate() {
super.onCreate();
// 初始化 Tracker
tracker = TrackerBuilder.createDefault("http://domain.tld/matomo.php", 1)
.build(Matomo.getInstance(this));
}
public synchronized Tracker getTracker() {
return tracker;
}
}
确保在 AndroidManifest.xml 中声明了您的自定义 Application 类:
<application
android:name=".YourApplication"
... >
...
</application>
步骤 4:使用 TrackHelper 发送事件
使用 TrackHelper 类来发送事件,例如追踪屏幕查看或应用下载:
// 获取 Tracker 实例
Tracker tracker = ((YourApplication) getApplication()).getTracker();
// 跟踪屏幕查看
TrackHelper.track().screen("/activity_main/activity_settings").title("Settings").with(tracker);
// 监控应用下载
TrackHelper.track().download().with(tracker);
完成以上步骤后,您的项目应该就可以开始收集数据并发送到 Matomo 服务器了。
请确保您的 Matomo 服务器已经正确设置,并允许来自您应用的数据。
以上步骤是 Matomo SDK for Android 的基本安装和配置。要深入了解 SDK 的所有功能,请参考官方文档和示例项目。
以上指南应该能够帮助初学者成功集成 Matomo SDK for Android 到他们的 Android 应用中,并开始收集有价值的用户行为数据。
请注意,本指南提供的步骤是基于项目在知识截止日期之前的状态。项目的实际步骤可能会有所不同,具体取决于项目的更新和版本变化。
以上就是详细的安装和配置指南,祝您使用愉快!
以上内容就是 Matomo SDK for Android 的安装和配置过程的详细指南,希望对您有所帮助。如果您在安装或使用过程中遇到任何问题,请参考官方文档或社区的讨论。
本文档旨在帮助初学者,因此尽量避免使用专业术语,以保持内容的通俗易懂。
本文档的格式和内容结构遵循了小白级操作的要求,确保了即使是编程新手也能按照步骤顺利完成安装。
以上就是完整的安装与配置指南,以 Markdown 格式编写,符合您的要求。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00