Glaze库中自定义枚举类型JSON序列化的双引号问题解析
2025-07-08 08:24:23作者:秋阔奎Evelyn
问题背景
在使用C++ JSON库Glaze时,开发者可能会遇到一个关于枚举类型序列化的特殊问题:当自定义枚举类型作为std::map的键时,生成的JSON字符串会出现额外的引号。具体表现为,预期的输出{"ABC":123}变成了{"\"ABC\"":123}。
问题分析
这个问题的根源在于Glaze库内部对map键的处理机制。当自定义枚举类型作为map键时,Glaze会将其视为普通字符串值,从而在序列化时添加额外的引号。这与枚举类型作为普通值时的处理方式不同。
解决方案
方法一:利用glz::meta元编程
通过为枚举类型定义glz::meta模板特化,可以指示Glaze将该类型视为枚举类型处理:
template <>
struct glz::meta<Foo> {
static constexpr auto custom_write = true;
static constexpr auto value = enumerate(Foo::eABC);
};
这种方法利用了Glaze的元编程机制,通过custom_write标志和enumerate函数,使库将枚举类型识别为需要特殊处理的类型。值得注意的是,即使只提供一个枚举值(如示例中的Foo::eABC),也足以让Glaze正确识别整个枚举类型。
方法二:使用raw选项
另一种解决方案是在自定义to_json实现中使用raw选项:
namespace glz::detail {
template <>
struct to_json<Foo> {
template <auto Opts>
static void op(const Foo& foo, auto&&... args) {
write<json>::op<opt_true<Opts, &opts::raw>>(fooName(foo), args...);
}
};
}
opt_true是一个辅助模板,用于在编译时设置选项,确保其他选项能正确传递。raw选项会指示Glaze在输出字符串值时省略引号。
技术细节
- 枚举序列化机制:Glaze对枚举类型有特殊处理逻辑,但需要正确标记才能触发
- map键处理:作为键时,类型会被视为普通字符串,导致额外的引号
- 元编程技巧:通过模板特化和编译时标志改变库的行为
- 选项传递:使用opt_true确保选项设置的正确性
最佳实践建议
- 对于简单的枚举类型,优先考虑使用glz::meta方法
- 当需要更复杂的自定义序列化逻辑时,使用to_json特化配合raw选项
- 在大型项目中,可以考虑为第三方枚举类型集中定义序列化规则
- 注意编译时与运行时字符串转换的区别,选择适合项目需求的方案
通过理解Glaze的内部机制和灵活运用其提供的定制点,开发者可以优雅地解决这类序列化问题,确保生成的JSON符合预期格式。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
271
2.56 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
103
130
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
597
157
暂无简介
Dart
561
125
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
224
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
606
仓颉编译器源码及 cjdb 调试工具。
C++
118
95
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
443