Hypothesis项目中关于JSON输出规范的观察报告
在Hypothesis项目的测试框架中,我们处理测试结果的可观测性输出时,会遇到一个关于JSON规范的特殊情况。具体来说,当涉及到浮点数的特殊值时,如NaN(非数字)、正无穷大(Infinity)和负无穷大(-Infinity),我们的输出方式与严格的JSON规范有所不同。
背景
JSON(JavaScript Object Notation)是一种轻量级的数据交换格式,广泛应用于Web开发和数据存储。根据JSON的官方规范,数值类型不支持NaN、Infinity和-Infinity这样的特殊浮点数值。然而,在实际应用中,特别是在科学计算和数据分析领域,这些特殊值是非常常见的。
Python的JSON处理
Python的json模块在默认情况下(allow_nan=True)允许序列化这些特殊浮点数值,并将它们输出为NaN、Infinity和-Infinity。这种做法虽然不符合严格的JSON规范,但在实际应用中更为实用,因为它避免了将这些特殊值转换为字符串或其他复杂结构的需求。
问题描述
在Hypothesis项目中,我们采用了Python的默认行为,即在JSON输出中包含这些特殊浮点数值。然而,这导致了一些兼容性问题。例如,JavaScript的JSON.parse方法无法解析包含这些特殊值的JSON字符串,因为JavaScript的JSON解析器严格遵守JSON规范,不接受这些非标准数值表示。
解决方案
虽然这个问题看起来是一个技术限制,但实际上它反映了不同编程语言和工具在处理JSON时的灵活性和严格性之间的权衡。在Hypothesis项目中,我们决定继续使用Python的默认行为,因为它提供了更好的实用性和兼容性,尤其是在科学计算和数据分析的场景中。
为了确保用户了解这一行为,我们计划在文档中明确说明这一点。具体来说,我们会指出我们的JSON输出可能包含这些特殊浮点数值,并且这些输出符合JSON5规范(一种扩展的JSON规范,支持更多数据类型和语法)。此外,我们还会提到,许多流行的JSON解析器(如Java的Gson、Ruby的JSON.parse等)也支持这些非标准数值表示。
实际影响
对于大多数用户来说,这一行为不会造成任何问题,因为他们在处理JSON数据时通常会使用支持这些特殊值的解析器。然而,如果用户需要在严格遵循JSON规范的环境中使用这些数据,他们可能需要额外的处理步骤,例如将这些特殊值转换为字符串或其他可接受的格式。
结论
在Hypothesis项目中,我们优先考虑了实用性和兼容性,选择了支持特殊浮点数值的JSON输出方式。虽然这与严格的JSON规范有所偏离,但它更好地满足了实际应用的需求。我们会在文档中明确说明这一点,以帮助用户更好地理解和使用我们的工具。
通过这种方式,我们既保持了框架的灵活性,又确保了用户能够清楚地了解其行为,从而做出明智的技术决策。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C086
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0137
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00