```markdown
2024-05-28 11:39:44作者:舒璇辛Bertina
# XFeat:轻量级图像匹配加速特征
[XFeat](https://github.com/verlab/accelerated_features) 是一款针对轻量级图像匹配的高效特征检测和描述算法。由Guilherme Potje等人开发,它不仅在准确性上与当前深度学习本地特征相媲美,而且在计算效率上更胜一筹,特别适合资源受限的硬件环境。
## 项目简介
XFeat设计的核心在于兼顾准确性和实时性,尤其对于移动机器人和增强现实应用来说,这是至关重要的。它的主要特性包括:
- 对于VGA图像,可以在普通i5笔记本CPU上实现真实时的稀疏推理。
- 简单的架构组件,便于部署到嵌入式设备(如Jetson、Raspberry Pi或定制AI芯片)。
- 支持稀疏和半密集匹配,适应不同下游任务需求。
- 使用紧凑的64维描述符,减少了存储和计算负担。
- 在保持高分辨率的同时限制网络通道数,以提高速度和鲁棒性。
## 项目技术分析
XFeat的独特之处在于其分离的特征检测分支,使用$1 \times 1$卷积处理$8 \times 8$张量块变换后的图像,实现快速处理。通过早期下采样和浅层卷积减少计算量,并在后续编码器中采用更深的卷积来提升鲁棒性。这种架构使得XFeat即使在CPU上也能实现高效的特征提取。
## 应用场景
- **视觉定位**:由于其对视角变化和光照条件的高容忍度,XFeat在视觉导航和目标重识别等领域表现出色。
- **增强现实**:在实时跟踪和渲染中,XFeat的快速特征匹配能力能够确保低延迟和流畅的用户体验。
## 项目特点
1. **高效性能**:XFeat在维持高性能的同时,比SuperPoint等现有深度学习特征更快,且在CPU上的表现优于ORB和SIFT。
2. **独立可扩展**:解耦的检测和描述功能使得各部分可以独立处理,适配不同的硬件优化策略。
3. **灵活性**:提供稀疏和半密集匹配选项,适用于不同应用场景。
4. **批量推理优化**:在GPU上进行批量推理时,如在VGA设置下的速度可达1,400 FPS(使用RTX 4090)。
## 开始使用
要体验XFeat,你可以直接在Colab上运行预配置的示例。如果想要了解更多详细信息,请查看项目GitHub页面的完整文档。
## 总结
XFeat是为了解决实际世界中的图像匹配问题而生,它在效率和精确度之间找到了一个完美的平衡点。如果你正在寻找一种能够在有限硬件资源条件下提供卓越性能的解决方案,XFeat绝对值得尝试。
[项目链接](https://github.com/verlab/accelerated_features)
这篇文章全面介绍了XFeat项目,强调了其在轻量级图像匹配中的优势和适用场景,以及其独特的技术特点和性能优势,旨在吸引开发者和研究人员试用这一开源解决方案。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Elog项目中的Notion公式导出问题分析与解决方案 MarkdownMonster中PDF预览缩放功能失效问题分析 VSCode Markdown Preview Enhanced扩展的编辑器默认设置技巧 Scramble项目中的文档注释格式化问题解析 QLMarkdown项目设置保存错误分析与解决方案 Markdown Monster配置文件重置问题的分析与解决方案 MarkdownMonster编辑器新增文档链接检查功能解析 VSCode Markdown预览增强插件中的TOML代码块渲染问题解析 MarkdownMonster拼写检查功能中单引号导致的定位偏移问题解析 Keila邮件平台中的Markdown删除线功能解析
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
663
152
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
659
297
Ascend Extension for PyTorch
Python
216
235
React Native鸿蒙化仓库
JavaScript
254
320
仓颉编译器源码及 cjdb 调试工具。
C++
132
866
仓颉编程语言运行时与标准库。
Cangjie
139
874
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.18 K
648
仓颉编程语言开发者文档。
59
818