Kinto项目23.0.0版本发布:监控指标优化与性能提升
Kinto是一个轻量级的JSON存储服务,主要用于Web和移动应用程序的后端数据存储。它提供了简单的RESTful API接口,支持多用户协作、权限控制和数据同步等功能。Kinto的设计理念是简单、灵活和可扩展,使其成为构建现代Web应用的理想选择。
监控指标的重大改进
在23.0.0版本中,Kinto团队对系统的监控指标进行了两项重要的架构调整:
-
移除请求大小和持续时间的状态标签:为了提高监控数据的聚合效果,开发团队决定从
request_size和request_duration_seconds指标中移除status标签。这一变化使得监控数据更加紧凑,减少了存储和查询的开销,同时保持了足够的诊断能力。 -
精简Prometheus直方图桶数量:将Prometheus直方图的桶数量从默认值缩减到8个。这一优化显著降低了监控系统的内存占用和计算开销,同时仍然提供了足够精细的延迟分布信息。对于大多数应用场景来说,8个桶已经能够很好地反映系统的性能特征。
新增配置选项
新版本引入了灵活的监控配置能力:
-
禁用默认指标:现在可以通过配置选择性地禁用某些默认收集的监控指标,这对于资源受限的环境或特定场景下的性能调优特别有用。
-
自定义桶配置:开发者可以根据实际需求调整直方图的桶边界,使其更好地匹配应用的性能特征。例如,对于延迟敏感型应用,可以在低延迟区域设置更密集的桶。
稳定性与性能修复
本次发布包含了多个重要的稳定性改进:
-
Makefile优化:改进了项目的构建系统,避免了不必要的重复安装操作,显著加快了开发环境的构建速度。
-
修复重复指标问题:解决了Prometheus监控指标重复收集的问题,这个问题会导致监控数据不准确和资源浪费。修复后,系统能够正确地收集和暴露各项指标。
升级建议
对于正在使用Kinto的生产环境,升级到23.0.0版本时需要注意:
- 由于监控指标的标签和桶配置发生了变化,现有的监控仪表板和告警规则可能需要相应调整。
- 新版本的监控数据存储效率更高,长期来看将降低系统的运维负担。
- 建议在测试环境中验证自定义监控配置的效果,确保它们满足业务需求后再部署到生产环境。
23.0.0版本的这些改进使Kinto在保持轻量级特性的同时,进一步提升了系统的可观测性和运行效率,为构建可靠的数据服务提供了更强大的基础。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C091
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00