XTuner微调LLaVA-Llama3模型时的显存溢出与Loss异常问题分析
2025-06-13 14:21:58作者:平淮齐Percy
问题背景
在使用XTuner项目微调LLaVA-Llama3模型时,开发者遇到了两个典型问题:显存溢出和训练过程中Loss值变为NaN。这类问题在大型视觉-语言模型微调过程中较为常见,特别是在资源有限的环境下。
显存溢出问题分析
当使用8块A100(40GB)显卡进行全参数微调时,即使将batch_size设置为1,仍然出现显存溢出。这主要是因为:
- 模型规模大:Llama3-8B模型本身参数规模庞大,加上视觉编码器(ViT-Large)的参数,显存需求极高
- 全参数微调:默认配置中对整个模型进行全参数微调,而非使用参数高效微调方法
- 优化器状态:全参数微调需要保存完整的优化器状态,进一步增加了显存压力
解决方案
1. 使用DeepSpeed Zero3优化
DeepSpeed的Zero3优化阶段可以有效减少显存占用,通过:
- 优化器状态分区
- 梯度分区
- 参数分区
但需要注意,Zero3虽然解决了显存问题,但可能导致通信开销增加,训练速度下降。
2. 采用LoRA微调策略
更推荐的解决方案是对LLM部分使用LoRA微调:
- 仅训练低秩适配矩阵,大幅减少可训练参数
- 保持原始模型参数冻结,显著降低显存需求
- 配置文件中可通过设置
llm_lora参数启用
3. 训练参数调整
当减小batch_size时,需要相应调整:
- 增加
accumulative_counts保持等效batch_size - 按比例缩小学习率(lr)以保持训练稳定性
- 监控Loss曲线,避免出现NaN值
实践经验
- 混合精度训练:确保正确配置了混合精度训练,可进一步节省显存
- 梯度裁剪:对于大模型,适当设置梯度裁剪阈值可防止梯度爆炸
- 学习率预热:使用学习率预热策略有助于训练初期稳定性
- Loss监控:出现NaN Loss时,应检查数据预处理、学习率设置和模型初始化
总结
在有限硬件资源下微调大型多模态模型时,参数高效微调方法(如LoRA)结合DeepSpeed优化是较为实用的解决方案。开发者需要根据具体硬件条件,在模型效果和训练效率之间找到平衡点。XTuner项目提供了灵活的配置选项,支持开发者根据需求调整微调策略。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
177
195
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
264
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
270
94
暂无简介
Dart
623
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
378
3.34 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1