XTuner微调LLaVA-Llama3模型时的显存溢出与Loss异常问题分析
2025-06-13 17:22:21作者:平淮齐Percy
问题背景
在使用XTuner项目微调LLaVA-Llama3模型时,开发者遇到了两个典型问题:显存溢出和训练过程中Loss值变为NaN。这类问题在大型视觉-语言模型微调过程中较为常见,特别是在资源有限的环境下。
显存溢出问题分析
当使用8块A100(40GB)显卡进行全参数微调时,即使将batch_size设置为1,仍然出现显存溢出。这主要是因为:
- 模型规模大:Llama3-8B模型本身参数规模庞大,加上视觉编码器(ViT-Large)的参数,显存需求极高
- 全参数微调:默认配置中对整个模型进行全参数微调,而非使用参数高效微调方法
- 优化器状态:全参数微调需要保存完整的优化器状态,进一步增加了显存压力
解决方案
1. 使用DeepSpeed Zero3优化
DeepSpeed的Zero3优化阶段可以有效减少显存占用,通过:
- 优化器状态分区
- 梯度分区
- 参数分区
但需要注意,Zero3虽然解决了显存问题,但可能导致通信开销增加,训练速度下降。
2. 采用LoRA微调策略
更推荐的解决方案是对LLM部分使用LoRA微调:
- 仅训练低秩适配矩阵,大幅减少可训练参数
- 保持原始模型参数冻结,显著降低显存需求
- 配置文件中可通过设置
llm_lora参数启用
3. 训练参数调整
当减小batch_size时,需要相应调整:
- 增加
accumulative_counts保持等效batch_size - 按比例缩小学习率(lr)以保持训练稳定性
- 监控Loss曲线,避免出现NaN值
实践经验
- 混合精度训练:确保正确配置了混合精度训练,可进一步节省显存
- 梯度裁剪:对于大模型,适当设置梯度裁剪阈值可防止梯度爆炸
- 学习率预热:使用学习率预热策略有助于训练初期稳定性
- Loss监控:出现NaN Loss时,应检查数据预处理、学习率设置和模型初始化
总结
在有限硬件资源下微调大型多模态模型时,参数高效微调方法(如LoRA)结合DeepSpeed优化是较为实用的解决方案。开发者需要根据具体硬件条件,在模型效果和训练效率之间找到平衡点。XTuner项目提供了灵活的配置选项,支持开发者根据需求调整微调策略。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C098
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
477
3.56 K
React Native鸿蒙化仓库
JavaScript
287
340
暂无简介
Dart
728
175
Ascend Extension for PyTorch
Python
287
320
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
446
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
233
98
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
450
180
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.28 K
704