XTuner微调LLaVA-Llama3模型时的显存溢出与Loss异常问题分析
2025-06-13 17:22:21作者:平淮齐Percy
问题背景
在使用XTuner项目微调LLaVA-Llama3模型时,开发者遇到了两个典型问题:显存溢出和训练过程中Loss值变为NaN。这类问题在大型视觉-语言模型微调过程中较为常见,特别是在资源有限的环境下。
显存溢出问题分析
当使用8块A100(40GB)显卡进行全参数微调时,即使将batch_size设置为1,仍然出现显存溢出。这主要是因为:
- 模型规模大:Llama3-8B模型本身参数规模庞大,加上视觉编码器(ViT-Large)的参数,显存需求极高
- 全参数微调:默认配置中对整个模型进行全参数微调,而非使用参数高效微调方法
- 优化器状态:全参数微调需要保存完整的优化器状态,进一步增加了显存压力
解决方案
1. 使用DeepSpeed Zero3优化
DeepSpeed的Zero3优化阶段可以有效减少显存占用,通过:
- 优化器状态分区
- 梯度分区
- 参数分区
但需要注意,Zero3虽然解决了显存问题,但可能导致通信开销增加,训练速度下降。
2. 采用LoRA微调策略
更推荐的解决方案是对LLM部分使用LoRA微调:
- 仅训练低秩适配矩阵,大幅减少可训练参数
- 保持原始模型参数冻结,显著降低显存需求
- 配置文件中可通过设置
llm_lora参数启用
3. 训练参数调整
当减小batch_size时,需要相应调整:
- 增加
accumulative_counts保持等效batch_size - 按比例缩小学习率(lr)以保持训练稳定性
- 监控Loss曲线,避免出现NaN值
实践经验
- 混合精度训练:确保正确配置了混合精度训练,可进一步节省显存
- 梯度裁剪:对于大模型,适当设置梯度裁剪阈值可防止梯度爆炸
- 学习率预热:使用学习率预热策略有助于训练初期稳定性
- Loss监控:出现NaN Loss时,应检查数据预处理、学习率设置和模型初始化
总结
在有限硬件资源下微调大型多模态模型时,参数高效微调方法(如LoRA)结合DeepSpeed优化是较为实用的解决方案。开发者需要根据具体硬件条件,在模型效果和训练效率之间找到平衡点。XTuner项目提供了灵活的配置选项,支持开发者根据需求调整微调策略。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Python小说下载神器:一键获取番茄小说完整内容如何用md2pptx快速将Markdown文档转换为专业PPT演示文稿 📊京东评价自动化工具:用Python脚本解放双手的高效助手三步掌握Payload-Dumper-Android:革新性OTA提取工具的核心价值定位终极Obsidian模板配置指南:10个技巧打造高效个人知识库终极指南:5步解锁Rockchip RK3588全部潜力,快速上手Ubuntu 22.04操作系统WebPlotDigitizer 安装配置指南:从图像中提取数据的开源工具终极FDS入门指南:5步掌握火灾动力学模拟技巧高效获取无损音乐:跨平台FLAC音乐下载工具全解析终极指南:5步复现Spring Boot高危漏洞CVE-2016-1000027
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
177
Ascend Extension for PyTorch
Python
340
404
React Native鸿蒙化仓库
JavaScript
302
355
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
暂无简介
Dart
770
191
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
114
140
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247