Rancher项目中Harvester节点驱动对PVC清理机制的优化分析
2025-05-08 13:41:00作者:昌雅子Ethen
背景概述
在Kubernetes多集群管理场景中,Rancher作为集群管理平台经常需要与底层基础设施提供商交互。当使用Harvester作为底层虚拟化平台时,存在一个典型的资源清理问题:当删除Rancher管理的RKE2客户集群时,该集群在Harvester中创建的持久卷声明(PVC)资源可能无法被自动清理。
问题本质
该问题的核心在于资源生命周期管理的断点。当通过Rancher删除一个RKE2客户集群时,Harvester节点驱动无法准确判断VM虚拟机被删除的具体原因——是由于集群配置变更导致的VM重建,还是整个集群被删除。这种信息缺失导致驱动无法做出正确的资源清理决策。
具体表现为:
- 用户在RKE2客户集群中创建了基于Harvester存储类的PVC
- 这些PVC可能被挂载到工作负载,也可能处于未使用状态
- 当删除整个RKE2集群时,关联的VM会被删除
- 但对应的PVC资源会残留在Harvester中,形成"孤儿"资源
技术解决方案
Rancher团队提出的解决方案是通过添加注解(annotation)机制来传递集群删除意图:
- 在
harvestermachines.rke-machine.cattle.io资源上实现OnChange处理器 - 当检测到machine资源被删除时,检查关联集群的删除时间戳
- 如果确认是集群删除操作,则在下游集群的VM对象上设置特定注解
- Harvester节点驱动通过识别该注解,触发相应的PVC清理逻辑
实现细节
该方案的关键技术点包括:
- 状态感知:通过监控集群的删除时间戳(deletionTimestamp)来区分普通VM删除和集群级删除
- 意图传递:使用Kubernetes注解作为轻量级的元数据传递机制,避免复杂的API交互
- 级联清理:确保资源清理的顺序和完整性,防止因依赖关系导致的资源泄漏
- 幂等处理:设计上保证多次处理同一事件不会导致重复操作或资源冲突
实际影响与最佳实践
虽然该问题存在工作绕道方案(如手动清理未使用的PVC),但在生产环境中仍建议应用此修复,因为:
- 资源利用率:避免存储资源的无效占用,特别是在大规模环境中
- 运维成本:减少人工干预需求,提高自动化管理水平
- 一致性保证:确保资源状态与用户预期一致,避免后续管理混乱
对于用户而言,最佳实践包括:
- 及时升级到包含此修复的Rancher版本
- 定期检查集群存储资源使用情况
- 在删除集群前,确认重要数据已备份
- 对于关键业务PVC,考虑使用保留策略(Retain)而非默认的删除策略
技术演进方向
该问题的解决也反映了Kubernetes生态系统中的一些技术趋势:
- 声明式API的扩展:通过资源注解传递操作意图,而非创建新的API字段
- 控制器协作模式:不同控制器间通过标准接口进行协作,而非紧密耦合
- 资源生命周期完整性:对跨资源、跨集群的资源管理提出更高要求
未来类似的跨系统资源管理问题可能会通过更通用的解决方案,如Kubernetes的Finalizer机制或Operator模式来统一处理。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
191
210
暂无简介
Dart
632
143
React Native鸿蒙化仓库
JavaScript
243
316
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
481
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
649
270
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
297
111
仓颉编译器源码及 cjdb 调试工具。
C++
128
857
openGauss kernel ~ openGauss is an open source relational database management system
C++
158
211