Tenstorrent TT-Metal v0.58.0-rc19 版本技术解析
Tenstorrent TT-Metal 是一个面向AI计算的高性能计算框架,专注于为机器学习工作负载提供高效的硬件支持。该项目通过创新的架构设计和软件优化,为深度学习模型提供了显著的性能提升。
本次发布的v0.58.0-rc19版本带来了多项重要改进和功能增强,主要聚焦于性能优化、算子支持扩展以及系统稳定性提升等方面。下面我们将详细解析这个版本的关键技术更新。
核心功能增强
算子支持扩展
-
新增广播操作支持:引入了实验性的
ttnn.experimental.broadcast_to
操作,为张量广播提供了更灵活的支持。广播操作在深度学习模型中非常常见,特别是在需要维度扩展的场景下。 -
堆叠操作实现:新增了
ttnn.stack
操作的支持,这使得开发者能够更方便地将多个张量沿新维度进行堆叠,这在构建复杂模型时特别有用。 -
排序功能完善:实现了单核排序功能(
ttnn.sort
),为数据处理流程提供了更多可能性。排序操作在推荐系统等场景中尤为重要。 -
关系运算增强:扩展了关系运算对整型数据的支持,包括等于、不等于等比较操作,为更广泛的数据处理场景提供了基础。
性能优化
-
Llama模型优化:针对Llama模型的SDPA(Scaled Dot-Product Attention)解码阶段进行了优化,采用16x32分块策略并移除了不必要的块复制操作,显著提升了处理效率。
-
卷积网络性能提升:对convnet_mnist等卷积网络进行了性能调优,通过算法和实现的改进提高了计算吞吐量。
-
内存访问优化:改进了DRAM切片大小的计算逻辑,优化了内存访问模式,减少了不必要的内存开销。
系统稳定性
-
设备初始化改进:修复了在多N150设备环境下
ttnn.CreateDevice
的问题,增强了系统在复杂硬件环境下的稳定性。 -
测试框架增强:改进了测试用例之间的设备ID清理机制,确保测试环境更加干净可靠。
-
错误检测机制:新增了对DRAM非法写入的监控机制,能够及时发现并报告潜在的内存访问问题。
架构改进
-
多播通信优化:在WH/BH架构上实现了原地Halo多播,优化了设备间的通信效率,减少了数据传输延迟。
-
分布式计算支持:增强了
all_gather_concat
操作对RM输入的支持,并为其输出添加了隐式平铺功能,简化了分布式计算流程。 -
设备拓扑支持:新增了对2D环面拓扑的初始化支持,特别针对6U架构进行了优化,为大规模计算集群提供了更好的基础。
开发者体验
-
文档完善:更新了单目运算的文档说明,使开发者能够更清晰地了解各操作的使用方式和限制。
-
测试覆盖增强:增加了对VAE(变分自编码器)中块和上块组件的测试,确保模型组件的可靠性。
-
工具链改进:引入了程序描述符(ProgramDescriptor)支持,为TTNN通用操作提供了更好的开发基础。
总结
Tenstorrent TT-Metal v0.58.0-rc19版本在算子支持、性能优化和系统稳定性方面都取得了显著进展。这些改进不仅扩展了框架的功能边界,也为开发者构建更复杂、更高性能的AI应用提供了坚实基础。特别是对Llama模型和卷积网络的优化,以及新增的广播、堆叠等操作支持,将直接提升开发者的生产力和应用性能。
随着这些改进的引入,TT-Metal框架在AI计算领域的竞争力得到进一步增强,为处理日益复杂的深度学习工作负载做好了准备。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~050CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0302- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









