Kubernetes Cluster API Provider AWS 使用教程
2024-09-25 12:49:51作者:卓艾滢Kingsley
1. 项目介绍
Kubernetes Cluster API Provider AWS(简称 CAPA)是一个用于在 AWS 上部署和管理 Kubernetes 集群的开源项目。它通过 Kubernetes 风格的 API 提供了一致的集群创建、配置和管理功能。CAPA 支持 "self-managed" 和 EKS Kubernetes 集群的部署和日常操作,使得在 AWS 上实现 Kubernetes 集群的自动化管理变得更加简单和高效。
主要特性
- 原生 Kubernetes 清单和 API:使用 Kubernetes 原生方式管理集群。
- 自动化基础设施管理:自动管理 VPC、网关、安全组和实例的创建。
- 多种 Linux 发行版支持:支持 Amazon Linux 2、CentOS 7、Ubuntu(18.04 和 20.04)和 Flatcar 等发行版。
- 私有子网部署:将 Kubernetes 控制平面部署到私有子网,并通过堡垒服务器进行管理。
- EKS 支持:支持 Amazon EKS 集群的部署和管理。
2. 项目快速启动
前提条件
- 已安装
kubectl
和clusterawsadm
工具。 - 拥有 AWS 账户,并配置好 AWS CLI。
安装 clusterawsadm
brew install clusterawsadm
配置 AWS 认证
export AWS_REGION=us-west-2
export AWS_ACCESS_KEY_ID=YOUR_ACCESS_KEY_ID
export AWS_SECRET_ACCESS_KEY=YOUR_SECRET_ACCESS_KEY
初始化集群
clusterawsadm bootstrap iam create-cloudformation-stack
export AWS_B64ENCODED_CREDENTIALS=$(clusterawsadm bootstrap credentials encode-as-profile)
clusterctl init --infrastructure aws
创建集群
clusterctl config cluster my-cluster --kubernetes-version v1.20.2 --control-plane-machine-count=3 --worker-machine-count=3 | kubectl apply -f -
验证集群
kubectl get clusters
kubectl get machines
3. 应用案例和最佳实践
应用案例
- 混合云部署:使用 CAPA 在 AWS 上部署 Kubernetes 集群,并与本地数据中心或其他云提供商的集群进行混合部署。
- CI/CD 自动化:将 CAPA 集成到 CI/CD 管道中,实现 Kubernetes 集群的自动化部署和升级。
- 多集群管理:使用 CAPA 管理多个 Kubernetes 集群,确保集群的一致性和可管理性。
最佳实践
- 使用预构建 AMI:利用预构建的 AMI 加快集群部署速度。
- 定期更新:定期更新 CAPA 和 Kubernetes 版本,确保集群的安全性和稳定性。
- 监控和日志:配置监控和日志收集工具,实时监控集群状态并记录关键操作日志。
4. 典型生态项目
Cluster API
Cluster API 是 Kubernetes 的一个子项目,旨在通过声明式 API 管理 Kubernetes 集群的生命周期。CAPA 是 Cluster API 的一个提供者,专门用于 AWS 平台。
kOps
kOps 是 Kubernetes Operations 的缩写,是一个用于在 AWS 上部署和管理 Kubernetes 集群的工具。虽然 kOps 和 CAPA 都用于 AWS 上的 Kubernetes 集群管理,但 CAPA 更侧重于与 Cluster API 的集成。
EKS (Amazon Elastic Kubernetes Service)
EKS 是 AWS 提供的托管 Kubernetes 服务。CAPA 支持 EKS 集群的部署和管理,使得用户可以在 AWS 上轻松创建和管理 EKS 集群。
通过以上模块的介绍,您可以快速了解并开始使用 Kubernetes Cluster API Provider AWS 项目。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++095AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
59
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
973
574

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133