Twemcache:探索Twitter的Memcached优化之路
在当今快速发展的互联网时代,缓存技术已成为提高网站性能和用户体验的重要手段。Memcached,作为一款高性能的分布式内存对象缓存系统,被广泛用于减少数据库负载,提升访问速度。然而,对于像Twitter这样的大型社交媒体平台,标准版的Memcached可能无法满足其特殊的需求。因此,Twitter开发了自己的缓存系统——Twemcache,它基于Memcached的1.4.4版本,进行了大量的修改和优化,以适应大规模生产环境。本文将详细介绍Twemcache的安装和使用方法,帮助读者更好地理解和运用这一开源项目。
安装Twemcache
安装前准备
在开始安装Twemcache之前,确保您的系统满足以下要求:
- 操作系统:建议使用Linux操作系统,因为Twemcache主要在大规模Linux环境中开发和测试。
- 硬件要求:根据您计划缓存的数据量,确保有足够的内存和CPU资源。
- 必备软件:安装编译工具(如gcc)、make工具以及libevent库,这些是构建Twemcache所必需的。
安装步骤
-
下载Twemcache源码
从以下地址克隆Twemcache的Git仓库:git clone git@github.com:twitter/twemcache.git -
构建Twemcache
进入Twemcache目录,执行以下命令进行配置和编译:cd twemcache ./configure make sudo make install如果您的libevent安装在非标准路径,可以使用
--with-libevent=<path>选项指定路径。 -
安装后验证
编译完成后,可以通过运行./src/twemcache -h命令来验证安装是否成功,并查看帮助信息。
常见问题及解决
-
问题:编译时出现错误,提示找不到libevent库。
-
解决:确保libevent库已正确安装,且路径正确。
-
问题:运行twemcache时提示权限不足。
-
解决:确保以root用户运行,或者使用
--user选项指定运行用户。
使用Twemcache
Twemcache的使用方法与标准Memcached类似,但提供了更多的配置选项和优化特性。
基本使用方法
-
启动Twemcache
通过以下命令启动Twemcache服务:src/twemcache -p 11211 -m 64其中,
-p指定监听的TCP端口,-m指定最大内存使用量。 -
连接Twemcache
使用Memcached客户端或任何支持Memcached协议的客户端连接到Twemcache服务。 -
设置和获取缓存数据
通过客户端发送set和get命令,如:set key1 0 0 5 value1 get key1
参数设置说明
Twemcache提供了丰富的命令行参数,用于配置其行为。以下是一些常用的参数:
-d:以守护进程模式运行。-t:设置工作线程的数量。-c:设置最大并发连接数。-M:设置内存回收策略。
结论
Twemcache是Twitter基于Memcached进行的优化版本,它为大规模生产环境提供了更好的性能和稳定性。通过本文的介绍,读者应该能够掌握Twemcache的安装和使用方法,并在实际项目中加以应用。想要深入学习Twemcache的读者,可以参考其官方文档和源代码,以获取更详细的配置和使用技巧。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00