PyTorch Lightning中DDP模式下的指标记录策略解析
2025-05-05 20:22:21作者:鲍丁臣Ursa
在分布式数据并行(DDP)训练场景中,PyTorch Lightning默认只会在rank 0进程上记录指标到metrics.csv文件。这一设计决策背后有着合理的工程考量,但开发者有时需要记录各个rank的独立指标数据。
默认行为的设计原理
PyTorch Lightning在DDP模式下自动将指标同步到rank 0进程进行统一记录,这种设计主要基于以下考虑:
- 数据一致性:确保所有进程看到的指标值一致
- 存储效率:避免重复存储相同数据
- 简化流程:大多数情况下用户只需要关注聚合后的指标
记录各rank独立指标的方法
当确实需要记录每个rank的独立指标时,开发者可以采用以下策略:
方法一:区分命名的日志记录
def training_step(self, batch, batch_idx):
loss = compute_loss(batch)
# 为每个rank创建独立的指标名称
self.log(f"rank_{self.global_rank}_loss",
loss,
on_step=True,
on_epoch=False,
sync_dist=True)
return loss
这种方法利用了Lightning的日志系统,虽然最终还是在rank 0上记录,但保持了各rank数据的独立性。
方法二:直接文件输出
def training_step(self, batch, batch_idx):
loss = compute_loss(batch)
# 定期将指标写入rank专属文件
if batch_idx % 100 == 0:
with open(f"metrics_rank_{self.global_rank}.txt", "a") as f:
f.write(f"Step {self.global_step}, Loss: {loss.item()}\n")
return loss
这种方法完全绕过Lightning的日志系统,直接由各rank进程写入独立文件。
方案选择建议
- 调试场景:推荐使用方法二,可以获取最原始的rank数据
- 生产环境:建议使用方法一,保持与Lightning生态的一致性
- 混合方案:可以同时使用两种方法,前者用于监控,后者用于调试
高级技巧
对于需要更复杂rank指标处理的场景,可以考虑:
- 自定义回调(Callback)来扩展日志行为
- 使用torch.distributed.all_gather收集所有rank数据后统一处理
- 实现自定义的Logger来支持多rank日志
理解这些底层机制有助于开发者更好地利用PyTorch Lightning进行分布式训练,同时满足各种特殊的指标记录需求。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
184
197
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
276
97
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.44 K
暂无简介
Dart
624
140
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
157
210