在smolagents中传递自定义类型变量到工具函数的最佳实践
2025-05-12 01:13:51作者:鲍丁臣Ursa
背景介绍
在使用smolagents框架开发即时通讯机器人时,开发者经常需要将自定义类型的变量传递给工具函数。特别是在处理提醒功能时,需要访问机器人特有的上下文(context)对象来调度任务。本文将深入探讨如何优雅地解决这一技术难题。
问题分析
在机器人开发中,上下文对象(context)是核心组件之一,它提供了访问job_queue等关键功能的能力。当我们需要在smolagents的CodeAgent中使用工具函数来添加提醒时,必须能够正确传递这个上下文对象。
常见的问题场景是:
- 工具函数需要访问上下文对象的job_queue来调度提醒
- 直接传递上下文对象时,CodeAgent可能会将其重新定义为None
- 每次使用工具函数时都需要重新定义,导致代码冗余
解决方案
工厂函数模式
最优雅的解决方案是使用工厂函数模式创建工具函数。这种方法可以封装上下文对象,同时保持工具函数的可重用性。
def create_reminder_tool(context, chat_id):
@tool
def add_reminder(title: str,
date_time: datetime.datetime,
location: str = None,
details: str = None) -> dict:
'''
添加提醒到任务队列
参数:
title: 提醒标题
date_time: 提醒时间
location: 提醒地点(可选)
details: 提醒详情(可选)
'''
# 实现细节...
reminder = {
'Title': title,
'Time': date_time,
'Location': location,
'Details': details
}
# 使用封装的context对象
context.job_queue.run_once(
alarm,
when=date_time,
chat_id=chat_id,
name=f"{title} ({date_time})",
data=reminder
)
return {'success': True, 'message': '提醒设置成功'}
return add_reminder
使用方法
async def handle_reminder_command(update, context):
chat_id = update.effective_chat.id
reminder_tool = create_reminder_tool(context, chat_id)
agent = CodeAgent(
tools=[reminder_tool],
additional_authorized_imports=['datetime'],
model=OpenAIServerModel(model_id='gpt-4'),
verbosity_level=3
)
response = agent.run("用户输入的提醒信息")
# 处理响应...
技术原理
这种解决方案之所以有效,是因为:
- 闭包特性:Python的闭包特性允许内部函数访问外部函数的变量,即使外部函数已经执行完毕
- 封装性:将敏感或易变的上下文对象封装在工具函数内部,避免被外部修改
- 可重用性:相同的工具函数可以在不同上下文中重复使用,只需重新创建即可
最佳实践建议
- 命名清晰:工具函数和工厂函数的命名应该清晰表达其用途
- 文档完整:确保工具函数的docstring完整,帮助LLM理解如何使用
- 错误处理:在工具函数内部添加适当的错误处理逻辑
- 类型提示:使用Python的类型提示提高代码可读性和工具可靠性
- 参数验证:对输入参数进行验证,确保符合预期
扩展思考
这种方法不仅适用于机器人开发,还可以推广到其他需要传递复杂对象的场景:
- 数据库连接对象
- 外部API客户端
- 配置管理器
- 日志记录器
通过工厂函数模式,我们可以创建与特定环境绑定的工具函数,同时保持代码的模块化和可测试性。
总结
在smolagents框架中处理自定义类型变量传递时,采用工厂函数模式是最佳选择。这种方法结合了Python的语言特性和框架的设计理念,既解决了技术难题,又保持了代码的优雅和可维护性。开发者可以根据实际需求调整工厂函数的实现,创建出更加灵活和强大的工具函数。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
RadiAnt DICOM Viewer 2021.2:专业医学影像阅片软件的全面指南 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 Jetson TX2开发板官方资源完全指南:从入门到精通 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
186
203
暂无简介
Dart
629
143
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
242
316
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
383
3.56 K
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
481
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
266
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.11 K
624
仓颉编译器源码及 cjdb 调试工具。
C++
128
858