在smolagents中传递自定义类型变量到工具函数的最佳实践
2025-05-12 13:01:51作者:鲍丁臣Ursa
背景介绍
在使用smolagents框架开发即时通讯机器人时,开发者经常需要将自定义类型的变量传递给工具函数。特别是在处理提醒功能时,需要访问机器人特有的上下文(context)对象来调度任务。本文将深入探讨如何优雅地解决这一技术难题。
问题分析
在机器人开发中,上下文对象(context)是核心组件之一,它提供了访问job_queue等关键功能的能力。当我们需要在smolagents的CodeAgent中使用工具函数来添加提醒时,必须能够正确传递这个上下文对象。
常见的问题场景是:
- 工具函数需要访问上下文对象的job_queue来调度提醒
- 直接传递上下文对象时,CodeAgent可能会将其重新定义为None
- 每次使用工具函数时都需要重新定义,导致代码冗余
解决方案
工厂函数模式
最优雅的解决方案是使用工厂函数模式创建工具函数。这种方法可以封装上下文对象,同时保持工具函数的可重用性。
def create_reminder_tool(context, chat_id):
@tool
def add_reminder(title: str,
date_time: datetime.datetime,
location: str = None,
details: str = None) -> dict:
'''
添加提醒到任务队列
参数:
title: 提醒标题
date_time: 提醒时间
location: 提醒地点(可选)
details: 提醒详情(可选)
'''
# 实现细节...
reminder = {
'Title': title,
'Time': date_time,
'Location': location,
'Details': details
}
# 使用封装的context对象
context.job_queue.run_once(
alarm,
when=date_time,
chat_id=chat_id,
name=f"{title} ({date_time})",
data=reminder
)
return {'success': True, 'message': '提醒设置成功'}
return add_reminder
使用方法
async def handle_reminder_command(update, context):
chat_id = update.effective_chat.id
reminder_tool = create_reminder_tool(context, chat_id)
agent = CodeAgent(
tools=[reminder_tool],
additional_authorized_imports=['datetime'],
model=OpenAIServerModel(model_id='gpt-4'),
verbosity_level=3
)
response = agent.run("用户输入的提醒信息")
# 处理响应...
技术原理
这种解决方案之所以有效,是因为:
- 闭包特性:Python的闭包特性允许内部函数访问外部函数的变量,即使外部函数已经执行完毕
- 封装性:将敏感或易变的上下文对象封装在工具函数内部,避免被外部修改
- 可重用性:相同的工具函数可以在不同上下文中重复使用,只需重新创建即可
最佳实践建议
- 命名清晰:工具函数和工厂函数的命名应该清晰表达其用途
- 文档完整:确保工具函数的docstring完整,帮助LLM理解如何使用
- 错误处理:在工具函数内部添加适当的错误处理逻辑
- 类型提示:使用Python的类型提示提高代码可读性和工具可靠性
- 参数验证:对输入参数进行验证,确保符合预期
扩展思考
这种方法不仅适用于机器人开发,还可以推广到其他需要传递复杂对象的场景:
- 数据库连接对象
- 外部API客户端
- 配置管理器
- 日志记录器
通过工厂函数模式,我们可以创建与特定环境绑定的工具函数,同时保持代码的模块化和可测试性。
总结
在smolagents框架中处理自定义类型变量传递时,采用工厂函数模式是最佳选择。这种方法结合了Python的语言特性和框架的设计理念,既解决了技术难题,又保持了代码的优雅和可维护性。开发者可以根据实际需求调整工厂函数的实现,创建出更加灵活和强大的工具函数。
登录后查看全文
热门项目推荐
相关项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GLM-V
GLM-4.5V and GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning with Scalable Reinforcement LearningPython00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0107AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile010
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
213
2.21 K

暂无简介
Dart
521
115

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
978
578

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
552
86

Ascend Extension for PyTorch
Python
65
94

React Native鸿蒙化仓库
JavaScript
209
285

openGauss kernel ~ openGauss is an open source relational database management system
C++
147
194

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399