JavaCPP Presets项目为TensorFlow Lite新增macOS ARM64平台支持
随着苹果M1芯片的普及,越来越多的开发者需要在ARM架构的macOS平台上运行深度学习框架。JavaCPP Presets项目作为Java本地接口(JNI)的高效封装工具,近期正式为TensorFlow Lite增加了macosx-arm64平台的支持。
JavaCPP Presets项目通过预编译的本地库和Java包装器,简化了在Java环境中调用C/C++库的过程。TensorFlow Lite作为谷歌推出的轻量级机器学习框架,在移动端和嵌入式设备上有着广泛应用。此次新增的macOS ARM64支持意味着开发者现在可以在M1/M2芯片的Mac电脑上直接使用TensorFlow Lite的Java API进行机器学习应用开发。
对于开发者而言,这一更新解决了在苹果Silicon平台上使用TensorFlow Lite的兼容性问题。通过JavaCPP Presets提供的预构建包,开发者可以避免复杂的本地库编译过程,直接集成到项目中。项目维护者表示,这一功能已经包含在最新的快照构建中,鼓励开发者进行测试并提供反馈。
值得注意的是,JavaCPP Presets采用模块化设计,不仅支持TensorFlow Lite,还封装了OpenCV、FFmpeg等多个流行库的Java接口。这种设计使得在不同平台上保持一致的Java API成为可能,同时隐藏了底层平台差异的复杂性。
对于希望在苹果M系列芯片设备上开发机器学习应用的Java开发者来说,这一更新显著降低了开发门槛。开发者现在可以充分利用M1/M2芯片的神经网络引擎加速,同时保持Java开发环境的便利性。
随着ARM架构在桌面计算领域的普及,JavaCPP Presets项目的这一更新体现了其对多平台支持的持续投入,为Java生态中的本地库调用提供了更加完善的解决方案。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0301- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









