DeepSeek LLM:打造高效语言模型实践指南
2024-09-24 16:31:27作者:胡易黎Nicole
项目介绍
深探(DeepSeek)LLM 是一个强大的语言模型,具备670亿参数,从零开始训练于一个浩瀚的数据集——涵盖2万亿个令牌,包括英语和中文。此项目由DeepSeek-AI团队开发,旨在促进研究进展,因此它开放了深探LLM的两个版本——基础版(7B/67B)和聊天版(7B/67B),供研究社区使用。该模型在推理、编码、数学以及中文理解等多方面展现出卓越性能,超越同类竞争者。
项目快速启动
要迅速启动并运行DeepSeek LLM,你可以通过Hugging Face平台获取模型或利用AWS S3下载中间检查点。以下是快速接入的步骤:
通过Hugging Face获取模型
对于想要直接应用模型的开发者,可以通过以下链接下载所需版本:
- DeepSeek LLM 7B 基础版: 🔗 HuggingFace
- DeepSeek LLM 7B 聊天版: 🔗 HuggingFace
下载中间检查点
对于需要中间阶段模型进行定制训练的研究人员,可以使用AWS CLI执行如下命令:
# 下载DeepSeek-LLM-7B-Base的中间检查点到本地目录
aws s3 cp s3://deepseek-ai/DeepSeek-LLM/DeepSeek-LLM-7B-Base ./local/path --recursive --request-payer
# 类似地,若需下载DeepSeek-LLM-67B-Base,则修改URL中的模型名称即可。
请注意,使用模型需遵守MIT许可证条款,并且商业使用亦被许可。
应用案例和最佳实践
问答系统实现
以构建一个基本的问答机器人为例,您可以用Python编写如下代码片段来调用DeepSeek LLM模型处理查询:
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "deepseek-ai/DeepSeek-LLM-7B-Chat"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
def ask_question(question):
inputs = tokenizer.encode(question, return_tensors="pt")
output = model.generate(inputs, max_length=100)
answer = tokenizer.decode(output[0], skip_special_tokens=True)
return answer
print(ask_question("什么是人工智能?"))
最佳实践建议
- 环境配置:确保您的环境已安装
transformers库最新版本。 - 性能优化:考虑使用GPU资源以加速模型推理。
- 数据隐私:处理敏感信息时,遵循数据保护法规。
典型生态项目
尽管DeepSeek LLM本身即是核心组件,其应用领域广泛,典型的应用场景包括但不限于:
- 智能客服:集成至客户服务系统中,提供即时、准确的客户解答。
- 自动文档摘要:用于快速提炼长文本的核心信息。
- 编程辅助:帮助开发者通过自然语言查询解决代码问题或自动生成代码片段。
- 教育辅导:作为虚拟导师,辅助学习过程中的概念理解和练习。
- 跨语言翻译:凭借其双语训练优势,进行高质量的语言互译。
结合这些应用场景,开发者和研究人员可进一步探索和开发定制化的解决方案,推动人工智能技术在各领域的深入应用。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
531
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355