Hilla 24.7.0.alpha13 版本深度解析
Hilla 是一个现代化的全栈框架,它结合了 Spring Boot 后端和 React 前端,为开发者提供了高效构建企业级 Web 应用程序的能力。Hilla 通过自动化的前后端通信机制,简化了全栈开发的复杂度,让开发者能够专注于业务逻辑的实现。
核心特性更新
连接状态控制增强
本次版本在 init
方法中新增了 mute
选项,为开发者提供了更精细的连接状态控制能力。这一改进使得开发者可以根据应用需求,灵活地管理前后端连接状态,特别适合需要自定义连接行为的复杂应用场景。
CRUD 分页功能优化
Hilla 的 CRUD 组件现在支持配置最大页面大小(max page size)。这一功能增强让数据分页管理更加灵活,开发者可以根据实际数据量和性能需求,设置合理的页面大小限制,优化大数据量场景下的用户体验。
热交换机制改进
热交换功能(hotswap)得到了显著增强,现在能够自动生成新检测到的端点(endpoints)。这一改进大幅提升了开发效率,特别是在开发过程中频繁添加或修改端点时,开发者无需手动干预,系统会自动处理这些变更。
技术实现细节
生成器插件优化
本次更新对生成器插件进行了重要调整,现在使用 generator-plugin-transfertypes
包来处理类型转换。这一变化优化了类型系统的处理流程,提高了代码生成的准确性和效率。
新项目初始化改进
对于新创建的 Hilla 项目,系统会自动添加新的 transfertypes
插件。这一改进简化了项目初始化流程,确保新项目从一开始就具备完整的类型转换能力,减少了开发者的配置工作。
依赖项升级
本次版本对多个关键依赖项进行了升级,包括:
- Vaadin 测试工具升级至 9.3.9 版本
- Swagger 核心库从 2.2.27 升级到 2.2.28
这些依赖项的升级带来了性能改进和安全增强,同时保持了与现有功能的兼容性。
开发者体验优化
Hilla 团队持续关注开发者体验,本次更新中对文档和入门指南进行了完善。这些改进降低了新用户的学习曲线,使开发者能够更快地上手并高效使用 Hilla 框架。
总结
Hilla 24.7.0.alpha13 版本在连接管理、CRUD 功能和开发效率方面带来了多项重要改进。这些更新不仅增强了框架的功能性,也提升了开发体验,使 Hilla 成为构建现代 Web 应用程序的更加强大和易用的工具。对于正在使用或考虑使用 Hilla 的开发者来说,这个版本值得关注和尝试。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava02GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0287- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









