Yeti平台ViriBack插件时间过滤异常分析与修复
在Yeti开源威胁情报平台中,ViriBack数据收集插件在执行定时任务时出现了一个关键异常。该异常发生在数据处理阶段,具体表现为时间戳比较操作失败,导致整个任务中断。
问题现象
当ViriBack插件尝试运行定时任务时,系统抛出了一个NumPy比较运算异常。错误信息显示,系统无法在DateTime64类型和StrDType字符串类型之间执行'less'(小于)比较操作。这个错误发生在数据过滤阶段,插件试图根据"FirstSeen"时间字段筛选出上次运行后新增的可观察对象。
技术分析
深入分析该问题,我们可以发现几个关键点:
-
类型不匹配:核心问题在于时间数据的类型不一致。插件试图将numpy.datetime64类型的时间戳与字符串类型的last_run参数进行比较。
-
Pandas比较机制:Pandas在底层使用NumPy的ufunc(通用函数)进行比较操作。当遇到不兼容的数据类型时,就会抛出UFuncNoLoopError异常。
-
数据流问题:异常发生在_task.py中的_filter_observables_by_time方法中,说明在数据预处理阶段没有做好类型统一。
解决方案
该问题已在代码提交aab28b59ffaf90b6893983d5736400bf598bda3c中得到修复。修复方案主要涉及:
-
类型转换:确保比较操作两边的数据类型一致,将字符串类型的时间参数转换为datetime64类型后再进行比较。
-
数据验证:在过滤操作前增加类型检查,确保输入数据的格式符合预期。
-
错误处理:增强异常捕获机制,为类似情况提供更有意义的错误信息。
经验总结
这个案例提醒开发者在处理时间序列数据时需要注意:
- 始终明确时间数据的存储格式和比较方式
- 在进行比较操作前进行必要的类型检查和转换
- 考虑使用Pandas提供的专门时间序列处理方法
- 为关键操作添加适当的错误处理和日志记录
对于使用Yeti平台的用户来说,这个修复确保了ViriBack数据收集插件能够正常工作,持续提供最新的威胁情报数据。平台维护者也通过这个案例改进了代码质量,增强了系统的稳定性。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00