Yeti平台ViriBack插件时间过滤异常分析与修复
在Yeti开源威胁情报平台中,ViriBack数据收集插件在执行定时任务时出现了一个关键异常。该异常发生在数据处理阶段,具体表现为时间戳比较操作失败,导致整个任务中断。
问题现象
当ViriBack插件尝试运行定时任务时,系统抛出了一个NumPy比较运算异常。错误信息显示,系统无法在DateTime64类型和StrDType字符串类型之间执行'less'(小于)比较操作。这个错误发生在数据过滤阶段,插件试图根据"FirstSeen"时间字段筛选出上次运行后新增的可观察对象。
技术分析
深入分析该问题,我们可以发现几个关键点:
-
类型不匹配:核心问题在于时间数据的类型不一致。插件试图将numpy.datetime64类型的时间戳与字符串类型的last_run参数进行比较。
-
Pandas比较机制:Pandas在底层使用NumPy的ufunc(通用函数)进行比较操作。当遇到不兼容的数据类型时,就会抛出UFuncNoLoopError异常。
-
数据流问题:异常发生在_task.py中的_filter_observables_by_time方法中,说明在数据预处理阶段没有做好类型统一。
解决方案
该问题已在代码提交aab28b59ffaf90b6893983d5736400bf598bda3c中得到修复。修复方案主要涉及:
-
类型转换:确保比较操作两边的数据类型一致,将字符串类型的时间参数转换为datetime64类型后再进行比较。
-
数据验证:在过滤操作前增加类型检查,确保输入数据的格式符合预期。
-
错误处理:增强异常捕获机制,为类似情况提供更有意义的错误信息。
经验总结
这个案例提醒开发者在处理时间序列数据时需要注意:
- 始终明确时间数据的存储格式和比较方式
- 在进行比较操作前进行必要的类型检查和转换
- 考虑使用Pandas提供的专门时间序列处理方法
- 为关键操作添加适当的错误处理和日志记录
对于使用Yeti平台的用户来说,这个修复确保了ViriBack数据收集插件能够正常工作,持续提供最新的威胁情报数据。平台维护者也通过这个案例改进了代码质量,增强了系统的稳定性。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00