GLM-4模型训练与评估中的图像Token填充机制解析
2025-06-03 21:21:59作者:龚格成
在GLM-4多模态模型的实现过程中,图像处理是一个关键环节。模型通过将图像转换为1600个视觉token(即num_patches)来实现视觉信息的编码。这些视觉token需要被插入到文本token序列中特定的位置,这一过程在模型的不同阶段有着不同的处理逻辑。
图像Token的插入机制
GLM-4模型在输入处理阶段会识别特殊的标记token(BOI和EOI)来确定图像token应该插入的位置。具体实现中,当检测到BOI和EOI标记时,模型会在这两个标记之间插入预设数量的图像token(num_patches)。这一机制确保了视觉信息能够被正确地整合到文本序列中。
训练与评估阶段的差异处理
在模型训练阶段(training=True),代码会主动处理图像token的填充问题。具体表现为:
- 遍历每个输入序列
- 定位BOI和EOI标记的位置
- 在这两个标记之间插入num_patches个图像token
- 相应地扩展attention mask以包含这些新增的token
然而在评估阶段(training=False),这一自动填充机制会被跳过,导致评估时图像token可能不会被正确插入。这种设计差异可能会影响模型在评估时的表现一致性。
实现细节分析
从技术实现角度看,这一差异源于代码中的一个条件判断:
if self.training:
# 训练时的图像token填充逻辑
这种设计可能基于以下考虑:
- 训练时需要确保数据格式完全正确
- 评估时可能假设输入已经过预处理
- 性能优化考虑,减少评估时的计算开销
潜在影响与解决方案
如果删除这个条件判断,让评估阶段也执行相同的填充逻辑,理论上可以带来以下好处:
- 训练和评估行为更加一致
- 减少因数据格式不一致导致的评估偏差
- 简化预处理流程
实际测试表明,移除这一条件判断不会对模型的其他功能产生负面影响,同时能够确保评估流程的正确执行。这一修改对于需要频繁在训练和评估间切换的研究场景特别有价值。
最佳实践建议
对于GLM-4模型的使用者,建议:
- 确保在任何阶段都提供格式一致的输入数据
- 如果修改了核心模型代码,需要进行充分的回归测试
- 对于生产环境,可以考虑统一预处理流程,而不是依赖模型的自动填充
理解这一机制对于正确使用GLM-4多模态模型至关重要,特别是在需要自定义训练流程或进行模型微调的场景下。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 开源电子设计自动化利器:KiCad EDA全方位使用指南 Python案例资源下载 - 从入门到精通的完整项目代码合集 Python开发者的macOS终极指南:VSCode安装配置全攻略 网页设计期末大作业资源包 - 一站式解决方案助力高效完成项目 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Jetson TX2开发板官方资源完全指南:从入门到精通
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.87 K
暂无简介
Dart
671
155
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
260
322
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
309
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.19 K
653
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1