Tracecat 0.25.0版本发布:威胁情报集成与工作流优化
Tracecat是一个开源的自动化安全运营平台,专注于安全事件的自动化响应与处理。它通过可视化工作流构建器,让安全团队能够快速创建和执行安全自动化流程,而无需编写复杂代码。最新发布的0.25.0版本带来了一系列重要更新,特别是在威胁情报集成和工作流优化方面。
威胁情报集成能力增强
0.25.0版本显著增强了Tracecat的威胁情报集成能力,新增了两个重要的威胁情报源:
-
CrowdSec IP地址查询:通过集成CrowdSec的威胁情报,用户现在可以直接在工作流中查询IP地址的威胁信息。CrowdSec是一个基于行为的入侵检测系统,能够提供实时的IP信誉数据,帮助安全团队快速识别恶意IP地址。
-
Anomali ThreatStream威胁情报查询:Anomali ThreatStream是业界领先的威胁情报平台,此次集成使得Tracecat用户可以直接访问其丰富的威胁指标数据库。安全团队现在可以在自动化工作流中直接查询域名、IP、URL等指标的威胁情报,大大提升了威胁检测和响应的效率。
这些集成的实现方式都经过了精心设计,确保API命名和步骤清晰一致,便于用户理解和使用。开发团队还特别关注了错误处理和边界条件,确保集成的稳定性。
工作流构建器改进
在用户体验方面,0.25.0版本对工作流构建器进行了多项优化:
-
JSONPath复制功能增强:现在,构建器视图中的复制按钮可以直接复制JSONPath表达式,这大大简化了数据提取和转换的操作流程。JSONPath是一种类似XPath的查询语言,用于从JSON文档中提取数据,在自动化工作流中非常常用。
-
空节点显示优化:改进了当工作流中没有节点时的显示效果,使其看起来不再那么"吓人"。这一看似小的改进实际上降低了新用户的使用门槛,让他们能够更轻松地开始构建第一个工作流。
模板验证与测试增强
0.25.0版本在开发体验和质量保证方面也有显著提升:
-
模板验证CLI工具:新增了命令行工具用于模板验证,这使得开发者在本地开发自定义模板时能够快速验证其正确性,而不必部署到生产环境进行测试。
-
单元测试中的模板验证:将模板验证纳入了单元测试体系,确保所有模板在提交前都经过严格验证。这一改进显著提升了代码质量和稳定性。
全新文档系统
此次发布还包含了完全重写的文档系统。新文档不仅内容更加全面,组织结构也更加合理,能够更好地帮助用户理解和使用Tracecat的各项功能。特别是对于新集成的威胁情报功能,文档提供了详细的配置和使用指南。
总结
Tracecat 0.25.0版本通过增强威胁情报集成能力、优化工作流构建体验、改进开发工具链和文档系统,进一步巩固了其作为开源安全自动化平台的地位。这些改进不仅提升了平台的功能性,也显著改善了用户体验,使得安全团队能够更高效地构建和执行自动化安全运营流程。
对于安全运营团队来说,这一版本特别值得关注的是其威胁情报集成能力的增强,这使得自动化工作流能够直接利用业界领先的威胁情报源,大大提升了威胁检测和响应的能力。同时,开发体验的改进也意味着自定义扩展和集成的开发将更加顺畅。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00