OpenDeepSearch项目中的查询改写与动态Few-Shot学习技术解析
OpenDeepSearch作为一个前沿的搜索增强项目,在其架构中包含了多项创新技术。本文将重点解析其中两个关键技术点:查询改写(Query Rephrasing)和动态Few-Shot学习(Dynamic Few-Shot Learning)的实现原理与应用场景。
查询改写技术
查询改写是提升搜索效果的重要手段。在OpenDeepSearch的架构设计中,这项技术被放置在搜索流程的关键位置。其核心思想是通过大语言模型对原始查询进行语义扩展和优化,生成多个相关但表达方式不同的查询变体。
技术实现上,查询改写发生在搜索请求处理流程的早期阶段。开发者建议在搜索上下文构建前,先对用户查询进行改写处理。典型的实现方式包括:
- 使用LLM生成多个语义相似的查询变体
- 将这些变体同时送入搜索系统
- 合并不同查询变体返回的结果,构建更全面的上下文
这种技术特别适合处理模糊查询或专业术语搜索场景,能够显著提高召回率。不过需要注意的是,查询改写可能会引入噪声,需要谨慎控制改写幅度和结果合并策略。
动态Few-Shot学习技术
Few-Shot学习是大模型应用中的关键技术,而动态Few-Shot学习则进一步提升了这一技术的适应性。OpenDeepSearch采用了基于语义相似度的动态示例选择机制。
技术实现上,主要包含以下关键组件:
- 示例数据集:存储大量问答对作为候选示例
- 嵌入模型:将问题和示例转换为向量表示
- 向量存储:高效存储和检索向量数据
- 相似度计算:根据输入问题动态选择最相关的示例
具体实现时,可以使用语义相似度示例选择器(SemanticSimilarityExampleSelector),配合适当的嵌入模型(如OpenAIEmbeddings)和向量存储方案(如内存向量库)。通过设置k值可以控制选择的示例数量,通常5个左右示例就能取得良好效果。
这种动态选择机制相比静态Few-Shot有以下优势:
- 适应不同领域的问题
- 减少不相关示例的干扰
- 自动匹配最合适的提示方式
技术展望
虽然这些功能在OpenDeepSearch的当前版本中尚未完全开放,但其技术路线已经相当清晰。对于希望自行实现的开发者,可以基于项目提供的思路进行扩展。未来随着技术的成熟,这些功能正式集成后,将进一步提升搜索系统的智能化水平。
对于实际应用,建议开发者关注以下优化方向:
- 查询改写的可控性
- Few-Shot示例的质量和代表性
- 系统响应时间的平衡
- 结果一致性的保障机制
这些技术在搜索增强、问答系统、知识检索等场景都有广泛应用前景。
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0123AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









