首页
/ OpenDeepSearch项目中的查询改写与动态Few-Shot学习技术解析

OpenDeepSearch项目中的查询改写与动态Few-Shot学习技术解析

2025-06-25 17:07:45作者:贡沫苏Truman

OpenDeepSearch作为一个前沿的搜索增强项目,在其架构中包含了多项创新技术。本文将重点解析其中两个关键技术点:查询改写(Query Rephrasing)和动态Few-Shot学习(Dynamic Few-Shot Learning)的实现原理与应用场景。

查询改写技术

查询改写是提升搜索效果的重要手段。在OpenDeepSearch的架构设计中,这项技术被放置在搜索流程的关键位置。其核心思想是通过大语言模型对原始查询进行语义扩展和优化,生成多个相关但表达方式不同的查询变体。

技术实现上,查询改写发生在搜索请求处理流程的早期阶段。开发者建议在搜索上下文构建前,先对用户查询进行改写处理。典型的实现方式包括:

  1. 使用LLM生成多个语义相似的查询变体
  2. 将这些变体同时送入搜索系统
  3. 合并不同查询变体返回的结果,构建更全面的上下文

这种技术特别适合处理模糊查询或专业术语搜索场景,能够显著提高召回率。不过需要注意的是,查询改写可能会引入噪声,需要谨慎控制改写幅度和结果合并策略。

动态Few-Shot学习技术

Few-Shot学习是大模型应用中的关键技术,而动态Few-Shot学习则进一步提升了这一技术的适应性。OpenDeepSearch采用了基于语义相似度的动态示例选择机制。

技术实现上,主要包含以下关键组件:

  1. 示例数据集:存储大量问答对作为候选示例
  2. 嵌入模型:将问题和示例转换为向量表示
  3. 向量存储:高效存储和检索向量数据
  4. 相似度计算:根据输入问题动态选择最相关的示例

具体实现时,可以使用语义相似度示例选择器(SemanticSimilarityExampleSelector),配合适当的嵌入模型(如OpenAIEmbeddings)和向量存储方案(如内存向量库)。通过设置k值可以控制选择的示例数量,通常5个左右示例就能取得良好效果。

这种动态选择机制相比静态Few-Shot有以下优势:

  • 适应不同领域的问题
  • 减少不相关示例的干扰
  • 自动匹配最合适的提示方式

技术展望

虽然这些功能在OpenDeepSearch的当前版本中尚未完全开放,但其技术路线已经相当清晰。对于希望自行实现的开发者,可以基于项目提供的思路进行扩展。未来随着技术的成熟,这些功能正式集成后,将进一步提升搜索系统的智能化水平。

对于实际应用,建议开发者关注以下优化方向:

  1. 查询改写的可控性
  2. Few-Shot示例的质量和代表性
  3. 系统响应时间的平衡
  4. 结果一致性的保障机制

这些技术在搜索增强、问答系统、知识检索等场景都有广泛应用前景。

登录后查看全文
热门项目推荐

热门内容推荐

最新内容推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
149
1.95 K
kernelkernel
deepin linux kernel
C
22
6
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
980
395
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
274
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
931
555
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
190
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
66
openHiTLS-examplesopenHiTLS-examples
本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
65
518
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.11 K
0