AWS Deep Learning Containers发布TensorFlow 2.18.0推理镜像
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的预构建深度学习环境,它集成了主流深度学习框架、工具和库,让开发者能够快速部署深度学习应用而无需自行配置复杂的环境。这些容器镜像经过优化,可直接在AWS云服务上运行,大幅简化了深度学习工作负载的部署流程。
本次发布的TensorFlow 2.18.0推理镜像包含CPU和GPU两个版本,基于Ubuntu 20.04操作系统构建。这些镜像专为EC2实例优化,提供了开箱即用的TensorFlow Serving环境,适合生产环境中的模型部署需求。
镜像版本详情
CPU版本镜像
该版本基于Python 3.10环境构建,包含了TensorFlow Serving API 2.18.0。镜像中预装了常用的Python包如:
- PyYAML 6.0.2:用于YAML文件处理
- AWS CLI 1.37.4:AWS命令行工具
- Boto3 1.36.4:AWS SDK for Python
- Cython 0.29.37:Python C扩展工具
- Protobuf 4.25.5:Google的数据序列化工具
系统层面包含了必要的开发工具链,如GCC编译器、标准C++库等,确保TensorFlow Serving能够正常运行。
GPU版本镜像
GPU版本除了包含CPU版本的所有功能外,还针对NVIDIA GPU进行了优化,支持CUDA 12.2和cuDNN 8。关键组件包括:
- NVIDIA CUDA命令行工具12.2
- cuBLAS 12.2库及开发文件
- cuDNN 8库及开发文件
- NCCL库(用于多GPU通信)
该版本使用tensorflow-serving-api-gpu 2.18.0,能够充分利用GPU加速推理计算。
技术特点
-
版本兼容性:基于TensorFlow 2.18.0稳定版构建,确保API稳定性和功能完整性。
-
环境一致性:预配置的开发环境消除了"在我机器上能运行"的问题,保证开发、测试和生产环境的一致性。
-
性能优化:针对AWS EC2实例进行了专门优化,包括:
- 系统库调优
- 内存管理优化
- GPU计算优化(GPU版本)
-
安全基础:基于Ubuntu 20.04 LTS构建,定期接收安全更新,确保基础环境的安全性。
-
开发便利性:预装了常用开发工具如Emacs,方便开发者直接在容器内进行调试和开发。
使用场景
这些推理镜像特别适合以下场景:
- 部署训练好的TensorFlow模型作为REST/gRPC服务
- 构建可扩展的机器学习推理服务
- 快速原型开发和概念验证
- 生产环境中的模型服务部署
对于需要高性能推理的应用,GPU版本能够显著提升吞吐量,降低延迟,特别适合实时推理场景如:
- 计算机视觉应用(物体检测、图像分类)
- 自然语言处理(文本分类、情感分析)
- 推荐系统
总结
AWS Deep Learning Containers提供的TensorFlow 2.18.0推理镜像简化了机器学习模型的部署流程,开发者可以专注于模型开发而非环境配置。这些经过优化的容器镜像既适合快速原型开发,也能满足生产环境对性能和安全性的要求。通过使用这些预构建的镜像,团队可以大幅缩短从模型开发到部署的时间,提高整体效率。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00