GLM-4V-9B模型微调中的显存优化实践
2025-06-03 09:58:07作者:董斯意
问题背景
在GLM-4V-9B多模态大模型的微调过程中,开发者经常遇到显存不足的问题。该模型作为视觉语言模型(VLM),在微调时需要同时处理图像和文本数据,对显存资源要求较高。本文将从技术角度分析问题成因,并提供多种可行的解决方案。
显存不足原因分析
- 模型规模庞大:GLM-4V-9B作为90亿参数的大模型,基础显存占用已经很高
- 多模态特性:视觉模块(ViT)处理高分辨率图像时会消耗大量显存
- 微调策略:全参数微调相比LoRA等轻量级方法显存需求更高
- 批次设置不当:过大的batch_size会线性增加显存消耗
- 分布式训练配置:未合理利用多卡资源导致显存分配不均
解决方案实践
1. 基础优化策略
- 降低batch_size:将writer_batch_size和batch_size设为1是最直接的缓解方法
- 冻结视觉模块:视觉编码器通常不需要微调,冻结后可节省大量显存
- 使用混合精度:FP16/BF16训练可减少约50%显存占用
2. 高级优化技术
- LoRA微调:仅训练低秩适配矩阵而非全参数,大幅降低显存需求
- 梯度检查点:以时间换空间,减少激活值的显存占用
- 模型并行:将模型层拆分到不同GPU上,突破单卡显存限制
3. DeepSpeed集成
对于多卡环境,DeepSpeed提供了更高效的显存优化方案:
-
ZeRO优化器:
- ZeRO-1:优化器状态分区
- ZeRO-2:梯度分区
- ZeRO-3:参数分区(最节省显存但通信开销最大)
-
配置建议:
{
"train_batch_size": 1,
"gradient_accumulation_steps": 8,
"optimizer": {
"type": "AdamW",
"params": {
"lr": 5e-5
}
},
"fp16": {
"enabled": true
},
"zero_optimization": {
"stage": 3,
"offload_optimizer": {
"device": "cpu"
}
}
}
实际效果对比
优化方法 | 单卡显存需求 | 训练速度 | 模型效果 |
---|---|---|---|
全参数微调 | 80G+ | 快 | 最好 |
LoRA微调 | 20-30G | 中等 | 接近全参数 |
ZeRO-3 | 可多卡分摊 | 慢 | 与全参数相当 |
冻结ViT | 28-35G | 快 | 视觉能力受限 |
实施建议
- 单卡环境:优先采用LoRA+冻结ViT的组合方案
- 多卡环境:使用DeepSpeed ZeRO-2/3进行分布式训练
- 资源评估:在开始前使用
nvitop
等工具监控显存使用情况 - 渐进式调优:从小batch_size开始逐步增加,找到显存与效能的平衡点
总结
GLM-4V-9B的微调确实面临显存挑战,但通过合理的优化策略组合,可以在有限资源下完成有效的模型调优。开发者应根据自身硬件条件和任务需求,选择最适合的优化方案。未来随着模型压缩和高效微调技术的发展,大模型微调的门槛将进一步降低。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava03GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0295- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
1 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析2 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析3 freeCodeCamp英语课程填空题提示缺失问题分析4 freeCodeCamp音乐播放器项目中的函数调用问题解析5 freeCodeCamp论坛排行榜项目中的错误日志规范要求6 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 7 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析8 freeCodeCamp Cafe Menu项目中link元素的void特性解析9 freeCodeCamp全栈开发课程中React实验项目的分类修正10 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

React Native鸿蒙化仓库
C++
176
260

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
854
505

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
254
295

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
331
1.08 K

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
397
370

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

deepin linux kernel
C
21
5