GLM-4V-9B模型微调中的显存优化实践
2025-06-03 09:58:07作者:董斯意
问题背景
在GLM-4V-9B多模态大模型的微调过程中,开发者经常遇到显存不足的问题。该模型作为视觉语言模型(VLM),在微调时需要同时处理图像和文本数据,对显存资源要求较高。本文将从技术角度分析问题成因,并提供多种可行的解决方案。
显存不足原因分析
- 模型规模庞大:GLM-4V-9B作为90亿参数的大模型,基础显存占用已经很高
- 多模态特性:视觉模块(ViT)处理高分辨率图像时会消耗大量显存
- 微调策略:全参数微调相比LoRA等轻量级方法显存需求更高
- 批次设置不当:过大的batch_size会线性增加显存消耗
- 分布式训练配置:未合理利用多卡资源导致显存分配不均
解决方案实践
1. 基础优化策略
- 降低batch_size:将writer_batch_size和batch_size设为1是最直接的缓解方法
- 冻结视觉模块:视觉编码器通常不需要微调,冻结后可节省大量显存
- 使用混合精度:FP16/BF16训练可减少约50%显存占用
2. 高级优化技术
- LoRA微调:仅训练低秩适配矩阵而非全参数,大幅降低显存需求
- 梯度检查点:以时间换空间,减少激活值的显存占用
- 模型并行:将模型层拆分到不同GPU上,突破单卡显存限制
3. DeepSpeed集成
对于多卡环境,DeepSpeed提供了更高效的显存优化方案:
-
ZeRO优化器:
- ZeRO-1:优化器状态分区
- ZeRO-2:梯度分区
- ZeRO-3:参数分区(最节省显存但通信开销最大)
-
配置建议:
{
"train_batch_size": 1,
"gradient_accumulation_steps": 8,
"optimizer": {
"type": "AdamW",
"params": {
"lr": 5e-5
}
},
"fp16": {
"enabled": true
},
"zero_optimization": {
"stage": 3,
"offload_optimizer": {
"device": "cpu"
}
}
}
实际效果对比
优化方法 | 单卡显存需求 | 训练速度 | 模型效果 |
---|---|---|---|
全参数微调 | 80G+ | 快 | 最好 |
LoRA微调 | 20-30G | 中等 | 接近全参数 |
ZeRO-3 | 可多卡分摊 | 慢 | 与全参数相当 |
冻结ViT | 28-35G | 快 | 视觉能力受限 |
实施建议
- 单卡环境:优先采用LoRA+冻结ViT的组合方案
- 多卡环境:使用DeepSpeed ZeRO-2/3进行分布式训练
- 资源评估:在开始前使用
nvitop
等工具监控显存使用情况 - 渐进式调优:从小batch_size开始逐步增加,找到显存与效能的平衡点
总结
GLM-4V-9B的微调确实面临显存挑战,但通过合理的优化策略组合,可以在有限资源下完成有效的模型调优。开发者应根据自身硬件条件和任务需求,选择最适合的优化方案。未来随着模型压缩和高效微调技术的发展,大模型微调的门槛将进一步降低。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++097AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
202
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
61
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
977
575

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
83

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133