AWS Amplify JS 在 Next.js 中的服务端 Cookie 行为解析
核心问题概述
AWS Amplify JS 的 Next.js 适配器(@aws-amplify/adapter-nextjs)在处理认证会话时,服务端设置的 Cookie 会采用默认属性值。这一行为在实际应用中可能导致客户端配置的 CookieStorage 与服务端设置的 Cookie 属性不匹配,进而引发认证流程中的异常情况。
技术背景
在 Next.js 应用中,当使用 AWS Amplify 进行认证时,通常会涉及两种环境下的 Cookie 操作:
- 客户端环境:通过 cognitoUserPoolsTokenProvider.setKeyValueStorage 配置自定义 Cookie 属性
- 服务端环境:在执行 fetchAuthSession 等操作时自动设置 Cookie
问题现象
当服务端触发 token 刷新时,会设置带有默认属性的 Cookie。如果客户端配置了特定的 Cookie 属性(如 domain、secure、path 等),这些服务端设置的 Cookie 可能无法被客户端正确管理。具体表现为:
- 登出操作时无法清除服务端设置的 Cookie
- 残留的过期 Cookie 导致重复触发 tokenRefresh_failure 事件
- 用户可能因此陷入无法登录的状态
解决方案演进
AWS Amplify 团队对此问题进行了两阶段的改进:
第一阶段:文档说明
最初版本中,文档仅提到服务端 fetchAuthSession 可能将认证令牌返回给客户端,但未明确说明服务端 Cookie 属性不可定制的问题。
第二阶段:功能增强
在 aws-amplify@6.13.1 和 @aws-amplify/adapter-nextjs@1.5.1 版本中,引入了服务端 Cookie 属性自定义功能。开发者现在可以通过 createServerRunner 工厂函数的 runtimeOptions 参数来配置服务端的 Cookie 属性。
最佳实践示例
以下是如何在 Next.js 应用中统一客户端和服务端 Cookie 配置的示例:
// 客户端配置
'use client';
import { Amplify } from 'aws-amplify';
import { cognitoUserPoolsTokenProvider } from 'aws-amplify/auth/cognito';
import { CookieStorage } from 'aws-amplify/utils';
Amplify.configure(amplifyConfig, { ssr: true });
cognitoUserPoolsTokenProvider.setKeyValueStorage(
new CookieStorage({
domain: "example.com",
secure: true,
path: '/',
sameSite: 'lax',
expires: 30,
}),
);
// 服务端配置
import { createServerRunner } from '@aws-amplify/adapter-nextjs';
export const { runWithAmplifyServerContext } = createServerRunner({
config: outputs,
runtimeOptions: {
cookies: {
domain: "example.com",
maxAge: 2592000, // 30天
sameSite: "lax",
},
},
});
注意事项
- secure 属性目前不能直接通过配置控制
- 服务端和客户端的 Cookie 配置应保持一致
- 在升级版本时,需要同时更新客户端和服务端的配置
总结
AWS Amplify JS 对 Next.js 的支持不断完善,服务端 Cookie 行为的明确和可配置性增强,使得开发者能够更好地控制认证流程。理解这一机制对于构建稳定可靠的认证系统至关重要,特别是在需要服务端渲染和客户端交互协同工作的场景下。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0362Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++087Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









