Mockery项目中对泛型接口类型声明解析的改进
背景介绍
Mockery是一个流行的Go语言mock生成工具,它能够根据接口定义自动生成对应的mock实现。随着Go 1.18引入泛型特性,Mockery也需要适应新的语法结构。在最新版本中,我们发现Mockery在处理某些泛型接口类型声明时存在解析不完整的问题。
问题分析
当开发者定义泛型接口并使用类型参数时,Go编译器会生成不同的抽象语法树(AST)节点。对于单一类型参数的接口,如Fooer[T any],类型声明会生成*ast.IndexExpr节点;而对于多类型参数的接口,如Fooer[T1 any, T2 any],则会生成*ast.IndexListExpr节点。
当前Mockery的解析逻辑只处理了*ast.IndexExpr情况,导致以下场景无法正确生成mock:
type Fooer[T1 any, T2 any] interface {
Foo(T1, T2)
}
type StringFooer Fooer[string, int] // 这里使用*ast.IndexListExpr
技术细节
在Go的AST中,泛型相关的节点类型主要有:
*ast.IndexExpr:表示单一类型参数的泛型类型*ast.IndexListExpr:表示多个类型参数的泛型类型*ast.TypeSpec:通用的类型声明节点
Mockery的解析逻辑位于pkg/parse.go文件中,当前只检查了*ast.IndexExpr情况,而忽略了*ast.IndexListExpr。这种不一致性导致多参数泛型接口的mock生成失败。
解决方案
解决这个问题相对简单,只需要在类型检查的switch语句中添加对*ast.IndexListExpr的支持即可。经过测试验证,这一改动能够正确处理所有泛型接口场景:
- 单一类型参数的接口
- 多类型参数的接口
- 基于泛型接口的类型别名
修改后的代码逻辑更加完整,能够覆盖Go泛型的所有使用场景。
影响范围
这一改进影响以下使用场景:
- 使用多个类型参数的泛型接口
- 基于多参数泛型接口定义的类型别名
- 复杂的泛型类型组合
对于现有用户来说,这一改动是完全向后兼容的,不会影响已有代码的mock生成。
最佳实践
在使用Mockery生成泛型接口mock时,建议:
- 确保使用最新版本的Mockery
- 检查生成的mock代码是否包含所有预期的方法
- 对于复杂的泛型场景,可以使用
--log-level debug参数验证解析过程 - 在CI流程中加入mock生成的验证步骤
总结
Mockery对Go泛型的支持正在逐步完善。本次针对*ast.IndexListExpr的解析改进,使得工具能够更全面地支持现代Go代码中的泛型特性。作为开发者,了解这些底层机制有助于更好地使用mock工具,并在遇到问题时能够快速定位原因。
随着Go语言的演进,我们期待Mockery能够持续跟进,提供更完善的代码生成支持,帮助开发者构建更可靠的测试体系。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00