DescartesLabs-Python项目:使用Catalog API进行遥感影像拼接与合成
2025-07-02 08:54:13作者:苗圣禹Peter
概述
在遥感影像处理中,我们经常遇到研究区域(AOI)与卫星影像采集边界不匹配的情况。DescartesLabs提供的Catalog API能够帮助我们获取覆盖整个研究区域的拼接影像。本文将详细介绍如何使用descarteslabs-python库中的Catalog功能进行影像拼接与合成操作。
准备工作
首先需要导入必要的模块:
from descarteslabs.catalog import Product, properties as p
from descarteslabs.geo import DLTile
from descarteslabs.utils import display
定义研究区域
使用DLTile定义研究区域,这里以美国科罗拉多州某地为例:
tile = DLTile.from_latlon(
lat=38.8664364, lon=-107.238606300, resolution=20.0, tilesize=1024, pad=0
)
参数说明:
resolution: 分辨率(米/像素)tilesize: 输出图像尺寸(像素)pad: 边缘填充像素数
影像搜索与获取
搜索2020年8月13日至21日期间Sentinel-2 L2A级别的影像:
search = (
Product.get("esa:sentinel-2:l2a:v1")
.images()
.intersects(tile)
.filter("2020-08-13" <= p.acquired < "2020-08-22")
.sort("acquired")
)
images = search.collect()
单幅影像可视化
首先查看每幅影像单独显示的效果:
rasters = images.stack("nir red green")
dates = [image.acquired.date().isoformat() for image in images]
display(*rasters, title=dates, size=2)
从结果可以看到,研究区域跨越了多个Sentinel-2影像块,因此每幅影像只能覆盖部分区域。
按日期分组拼接
由于同一日期可能有多个影像覆盖研究区域的不同部分,我们可以按采集日期分组并拼接:
flatten = ["acquired.year", "acquired.month", "acquired.day"]
rasters = images.stack("nir red green", flatten=flatten)
dates = [ic[0].acquired.date().isoformat() for _, ic in images.groupby(*flatten)]
display(*rasters, title=dates, size=2)
这种方法将同一日期采集的影像拼接成一幅完整的覆盖研究区域的影像。
影像合成策略
最新影像优先
默认情况下,影像按采集日期排序,mosaic方法会将最新影像显示在最上层:
arr = images.mosaic("nir red green")
display(arr, title="latest", size=2)
最早影像优先
如果需要最早采集的影像显示在最上层,可以反转排序:
arr = images.sorted("acquired", reverse=True).mosaic("nir red green")
display(arr, title="earliest", size=2)
技术要点总结
- 影像搜索:通过Catalog API可以方便地搜索特定时间范围和区域的卫星影像
- 影像拼接:当研究区域跨越多个影像块时,可以使用stack方法配合flatten参数按指定属性(如日期)分组拼接
- 合成策略:mosaic方法提供了灵活的影像合成方式,可以通过排序控制哪层影像显示在最上层
应用场景
这种影像拼接与合成技术在以下场景中特别有用:
- 大区域监测(如森林覆盖变化)
- 云量较高的区域需要多幅影像拼接获得完整覆盖
- 时间序列分析中需要按日期分组比较
通过DescartesLabs提供的这些功能,研究人员可以更高效地获取和处理符合自己需求的遥感影像数据。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C045
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0122
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
699
162
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
696
374
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
675
Ascend Extension for PyTorch
Python
243
281
React Native鸿蒙化仓库
JavaScript
271
328