DescartesLabs-Python项目:使用Catalog API进行遥感影像拼接与合成
2025-07-02 01:00:09作者:苗圣禹Peter
概述
在遥感影像处理中,我们经常遇到研究区域(AOI)与卫星影像采集边界不匹配的情况。DescartesLabs提供的Catalog API能够帮助我们获取覆盖整个研究区域的拼接影像。本文将详细介绍如何使用descarteslabs-python库中的Catalog功能进行影像拼接与合成操作。
准备工作
首先需要导入必要的模块:
from descarteslabs.catalog import Product, properties as p
from descarteslabs.geo import DLTile
from descarteslabs.utils import display
定义研究区域
使用DLTile定义研究区域,这里以美国科罗拉多州某地为例:
tile = DLTile.from_latlon(
lat=38.8664364, lon=-107.238606300, resolution=20.0, tilesize=1024, pad=0
)
参数说明:
resolution: 分辨率(米/像素)tilesize: 输出图像尺寸(像素)pad: 边缘填充像素数
影像搜索与获取
搜索2020年8月13日至21日期间Sentinel-2 L2A级别的影像:
search = (
Product.get("esa:sentinel-2:l2a:v1")
.images()
.intersects(tile)
.filter("2020-08-13" <= p.acquired < "2020-08-22")
.sort("acquired")
)
images = search.collect()
单幅影像可视化
首先查看每幅影像单独显示的效果:
rasters = images.stack("nir red green")
dates = [image.acquired.date().isoformat() for image in images]
display(*rasters, title=dates, size=2)
从结果可以看到,研究区域跨越了多个Sentinel-2影像块,因此每幅影像只能覆盖部分区域。
按日期分组拼接
由于同一日期可能有多个影像覆盖研究区域的不同部分,我们可以按采集日期分组并拼接:
flatten = ["acquired.year", "acquired.month", "acquired.day"]
rasters = images.stack("nir red green", flatten=flatten)
dates = [ic[0].acquired.date().isoformat() for _, ic in images.groupby(*flatten)]
display(*rasters, title=dates, size=2)
这种方法将同一日期采集的影像拼接成一幅完整的覆盖研究区域的影像。
影像合成策略
最新影像优先
默认情况下,影像按采集日期排序,mosaic方法会将最新影像显示在最上层:
arr = images.mosaic("nir red green")
display(arr, title="latest", size=2)
最早影像优先
如果需要最早采集的影像显示在最上层,可以反转排序:
arr = images.sorted("acquired", reverse=True).mosaic("nir red green")
display(arr, title="earliest", size=2)
技术要点总结
- 影像搜索:通过Catalog API可以方便地搜索特定时间范围和区域的卫星影像
- 影像拼接:当研究区域跨越多个影像块时,可以使用stack方法配合flatten参数按指定属性(如日期)分组拼接
- 合成策略:mosaic方法提供了灵活的影像合成方式,可以通过排序控制哪层影像显示在最上层
应用场景
这种影像拼接与合成技术在以下场景中特别有用:
- 大区域监测(如森林覆盖变化)
- 云量较高的区域需要多幅影像拼接获得完整覆盖
- 时间序列分析中需要按日期分组比较
通过DescartesLabs提供的这些功能,研究人员可以更高效地获取和处理符合自己需求的遥感影像数据。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
648
149
Ascend Extension for PyTorch
Python
211
221
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
655
291
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
250
319
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
486
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.16 K
640
仓颉编程语言运行时与标准库。
Cangjie
136
874
openGauss kernel ~ openGauss is an open source relational database management system
C++
159
216