Apache Arrow DataFusion SQL反解析器中的排序表达式处理问题剖析
2025-05-31 18:37:51作者:郦嵘贵Just
背景介绍
在Apache Arrow DataFusion项目中,SQL反解析器(unparser)负责将逻辑计划(LogicalPlan)转换回可执行的SQL语句。这一过程对于查询优化、调试和可视化等场景至关重要。然而,在处理包含复杂排序表达式的查询时,反解析器存在一个关键缺陷。
问题本质
DataFusion在处理聚合查询时会将聚合计算从LogicalPlan节点转换为上层计划中的列引用。例如,对于count(*)这样的聚合函数,在逻辑计划中会被表示为名为count(Int64(1))的列引用。这种转换虽然优化了查询执行,但在反解析回SQL时带来了挑战。
原有机制分析
原有的反解析机制通过以下方式处理聚合列:
- 查找逻辑计划中的聚合节点
- 使用
aggr引用查找底层计算表达式 - 将表达式传递给表达式反解析器生成正确的SQL
这种方法对于简单的列引用或带别名的列引用工作良好,但在处理ORDER BY子句时存在局限性。原实现假设ORDER BY只能是简单的列引用或带别名的列引用,而实际上SQL标准允许ORDER BY包含任意表达式。
典型问题场景
双重别名情况
SELECT item.i_category, count(*)
FROM item
GROUP BY item.i_category
ORDER BY count(*) ASC
在逻辑计划中,count(*)可能被表示为count(Int64(1)) AS count(*) AS count(*),这种双重别名结构超出了原有反解析器的处理能力。
复杂表达式情况
SELECT i_category, i_class,
grouping(i_category) + grouping(i_class) as lochierarchy
FROM store_sales, item
GROUP BY ROLLUP(i_category, i_class)
ORDER BY grouping(i_category) + grouping(i_class) DESC,
CASE WHEN grouping(i_category) + grouping(i_class) = 0
THEN i_category END
LIMIT 100
这个查询包含:
- 二元表达式
grouping(i_category) + grouping(i_class) DESC - CASE条件表达式
这些复杂表达式结构完全符合SQL标准,但原有反解析器无法正确处理。
技术影响
这一问题实际上暴露了两个层面的问题:
- DataFusion执行引擎本身曾存在对ORDER BY表达式处理的bug(已修复)
- 反解析器在处理复杂ORDER BY表达式时的不足
有趣的是,由于执行引擎的bug恰好限制了ORDER BY表达式的复杂度,使得反解析器的不足在之前未被发现。当执行引擎修复后,反解析器的问题才显现出来。
解决方案方向
要彻底解决这一问题,反解析器需要:
- 增强表达式处理能力,能够递归解析任意复杂的ORDER BY表达式
- 完善聚合列的反解析逻辑,确保能正确处理嵌套在复杂表达式中的聚合引用
- 保持对SQL标准各种表达式语法的完整支持
这一改进将使DataFusion能够更完整地实现SQL查询的"解析-优化-执行-反解析"闭环,为查询优化和调试提供更强大的支持。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355