Restkit 项目技术文档
2024-12-20 04:24:11作者:蔡丛锟
1. 安装指南
1.1 环境要求
Restkit 需要 Python 2.x 版本,且版本必须高于 2.6。Python 3 的支持即将推出。
1.2 安装步骤
1.2.1 使用 pip 安装
首先,确保你已经安装了最新版本的 distribute,然后使用 pip 安装 restkit:
$ curl -O http://python-distribute.org/distribute_setup.py
$ sudo python distribute_setup.py
$ easy_install pip
$ pip install restkit
1.2.2 从源码安装
如果你希望从源码安装 restkit,可以按照以下步骤操作:
$ git clone https://github.com/benoitc/restkit.git
$ cd restkit
$ pip install -r requirements.txt
$ python setup.py install
1.2.3 从 PyPI 安装
你也可以直接从 PyPI 安装 restkit:
$ pip install restkit
2. 项目使用说明
2.1 概述
Restkit 是一个用于 Python 的 HTTP 资源工具包,允许你轻松访问 HTTP 资源并围绕其构建对象。它是 couchdbkit 的基础,couchdbkit 是一个用于 CouchDB 的 Python 框架。
2.2 主要特性
- 完全兼容 HTTP 1.0 和 1.1 的 HTTP 客户端。
- 线程安全。
- 使用纯套接字调用和自定义 HTTP 解析器(不基于
httplib或urllib2)。 - 将 HTTP 资源映射到 Python 对象。
- 支持在飞行中进行读取和发送。
- 重用连接。
- 支持
Eventlet和Gevent。 - 支持分块传输编码(Chunked transfer encoding)。
- 支持基本认证(Basic Authentification)和 OAuth。
- 支持多部分表单和 URL 编码表单。
- 支持流式传输。
- 代理处理。
- HTTP 过滤器,允许你在请求和响应中挂钩自定义回调。
- 兼容 Python 2.x(>= 2.6)。
2.3 使用示例
以下是一个简单的使用示例,展示如何使用 restkit 进行 HTTP 请求:
from restkit import request
# 发送 GET 请求
r = request('http://example.com/resource')
# 获取响应内容
response_body = r.body_string()
# 获取响应头
response_headers = r.headers
3. 项目 API 使用文档
3.1 request 函数
request 函数是 restkit 的核心功能,用于发送 HTTP 请求。
3.1.1 参数
url:请求的 URL。method:HTTP 方法(默认为GET)。headers:请求头。body:请求体。
3.1.2 返回值
返回一个包含响应内容的对象,可以通过 body_string() 方法获取响应体,通过 headers 属性获取响应头。
3.2 其他 API
Resource:用于映射 HTTP 资源到 Python 对象。Filter:用于在请求和响应中挂钩自定义回调。
4. 项目安装方式
4.1 使用 pip 安装
$ pip install restkit
4.2 从源码安装
$ git clone https://github.com/benoitc/restkit.git
$ cd restkit
$ pip install -r requirements.txt
$ python setup.py install
4.3 从 PyPI 安装
$ pip install restkit
5. 许可证
Restkit 使用 MIT 许可证。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C030
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
425
3.26 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
334
暂无简介
Dart
686
161
Ascend Extension for PyTorch
Python
231
264
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
667
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
19
30