Visual-RFT项目中的split_with_sizes维度匹配问题分析与解决方案
2025-07-10 04:51:08作者:盛欣凯Ernestine
问题背景
在Visual-RFT项目训练过程中,用户在使用Qwen2-VL-2B模型进行视觉指令微调时遇到了一个PyTorch运行时错误。该错误发生在模型训练阶段,具体表现为split_with_sizes操作时维度不匹配的问题。
错误现象
系统报错信息显示:
RuntimeError: split_with_sizes expects split_sizes to sum exactly to 1 (input tensor's size at dimension 0), but got split_sizes=[936]
类似的问题在其他配置中也出现过:
split_with_sizes expects split_sizes to sum exactly to 1 (input tensor's size at dimension 0), but got split_sizes=[1564]
技术分析
错误根源
-
split_with_sizes函数机制:这是PyTorch中的一个张量分割函数,要求split_sizes参数各维度之和必须严格等于输入张量在对应维度上的大小。
-
维度不匹配:在Visual-RFT项目中,模型期望输入张量在维度0上的大小为1,但实际传入的数据在该维度上却有936或1564的大小。
-
潜在原因:
- 数据加载器可能没有正确批处理数据
- 模型输入预处理环节可能存在维度转换错误
- 分布式训练配置可能导致数据分片异常
解决方案
已验证的解决方法
-
调整数据加载配置:
- 确保per_device_train_batch_size设置为1
- 检查gradient_accumulation_steps配置是否合理
-
检查数据预处理:
- 验证数据集中的样本维度是否符合模型预期
- 确保图像预处理后的张量形状正确
-
分布式训练配置:
- 确认nproc_per_node参数与实际GPU数量匹配
- 检查deepspeed配置文件中关于数据并行的设置
最佳实践建议
-
调试步骤:
- 先使用单GPU模式运行,排除分布式因素
- 逐步增加batch_size,观察错误变化
- 添加张量形状检查代码
-
预防措施:
- 在数据加载环节添加维度验证
- 使用PyTorch的调试工具检查中间张量形状
- 编写单元测试验证数据预处理流程
-
性能权衡:
- 在解决维度问题的同时,需要考虑显存利用率
- 合理设置max_pixels参数平衡计算效率和内存消耗
总结
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.76 K
Ascend Extension for PyTorch
Python
345
412
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
888
605
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
182
暂无简介
Dart
777
192
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
758
React Native鸿蒙化仓库
JavaScript
303
356
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
896