KEDA Temporal Scaler 在 Temporal Cloud 中使用 API Key 认证的 TLS 配置问题分析
问题背景
KEDA(Kubernetes Event-driven Autoscaling)是一个流行的 Kubernetes 事件驱动自动扩展组件,其中的 Temporal Scaler 用于根据 Temporal 工作流引擎中的任务队列长度来自动扩展工作节点。然而,当用户尝试将 Temporal Scaler 与 Temporal Cloud 服务配合使用时,发现了一个关键的身份验证问题。
问题现象
用户在使用 Temporal Cloud 的 API Key 认证方式时,KEDA 的 Temporal Scaler 无法正常工作,系统日志显示连接错误:"read: connection reset by peer"。经过分析,这是由于 Temporal Scaler 在与 Temporal Cloud 建立连接时没有正确启用 TLS 加密导致的。
技术分析
Temporal Cloud 的安全要求
Temporal Cloud 要求所有使用 API Key 认证的客户端连接都必须启用 TLS 加密。这是 Temporal Cloud 的安全策略之一,旨在确保所有通信都经过加密保护。
KEDA Temporal Scaler 的实现缺陷
在 KEDA 的 Temporal Scaler 实现中,当仅配置 API Key 认证时,代码没有自动启用 TLS 连接选项。这导致客户端尝试以明文方式连接 Temporal Cloud 服务,而服务器端由于安全策略会拒绝这种不安全的连接,从而产生"connection reset by peer"错误。
根本原因
查看 KEDA 源代码可以发现,Temporal Scaler 在处理 API Key 认证时,没有将 TLS 设置为默认启用状态。这与 Temporal Cloud 的安全要求相矛盾,导致了连接失败。
解决方案
临时解决方案
用户发现可以通过同时提供客户端证书的方式来强制启用 TLS 连接,即使不使用 mTLS(双向 TLS)认证:
- 使用 Temporal Cloud CLI 工具生成 CA 证书和客户端证书
- 将生成的客户端证书和私钥进行 Base64 编码
- 将这些凭证添加到 Kubernetes Secret 中
- 在 TriggerAuthentication 中同时配置 apiKey、cert 和 key 参数
这种方法虽然可行,但增加了不必要的证书管理复杂度。
理想解决方案
从技术实现角度,KEDA Temporal Scaler 应该进行以下改进:
- 当检测到使用 Temporal Cloud 端点(包含 .temporal.io 域名)时,自动启用 TLS
- 对于 API Key 认证方式,强制要求 TLS 连接
- 提供明确的错误提示,指导用户正确配置 TLS
最佳实践建议
对于需要在生产环境中使用 KEDA Temporal Scaler 与 Temporal Cloud 集成的用户,建议:
- 始终为 Temporal Cloud 连接启用 TLS
- 定期轮换 API Key 和证书
- 监控连接状态和自动扩展指标
- 保持 KEDA 组件更新,以获取最新的安全修复和功能改进
总结
这个问题凸显了在云服务集成中安全配置的重要性。KEDA 作为连接 Kubernetes 和外部系统的桥梁,需要特别注意各种云服务的特定安全要求。开发者在使用类似集成时,应当仔细阅读目标服务的文档,了解其安全模型和连接要求,以避免类似的连接问题。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00