Apache ServiceComb Pack 技术文档
2024-12-20 23:15:39作者:蔡怀权
1. 安装指南
1.1 环境准备
在安装 Apache ServiceComb Pack 之前,请确保您的环境满足以下要求:
- Java 8 或更高版本
- Maven 3.5 或更高版本
- Docker(可选,用于容器化部署)
1.2 下载软件包
您可以通过以下方式获取 Apache ServiceComb Pack 的最新版本:
- 发行版本:访问 下载软件包 页面下载最新发行版本。
- 预览版本:如果您需要最新的预览版本,可以将以下仓库描述信息添加到您的
pom.xml
文件中:<repositories> <repository> <releases /> <snapshots> <enabled>true</enabled> </snapshots> <id>repo.apache.snapshot</id> <url>https://repository.apache.org/content/repositories/snapshots/</url> </repository> </repositories> <pluginRepositories> <pluginRepository> <releases /> <snapshots> <enabled>true</enabled> </snapshots> <id>repo.apache.snapshot</id> <url>https://repository.apache.org/content/repositories/snapshots/</url> </pluginRepository> </pluginRepositories>
1.3 编译代码
您可以通过以下命令编译代码并运行单元测试:
$ mvn clean install
如果您希望编译示例代码并生成 Docker 镜像,可以使用以下命令:
$ mvn clean install -Pdemo
如果您不希望运行测试,可以使用以下命令:
$ mvn clean install -DskipTests=true -Pdemo
1.4 构建发布包
如果您需要构建软件发布包,可以使用以下命令:
$ mvn clean install -DskipTests=true -Prelease
发布包将生成在 distribution/target
目录下。
2. 项目的使用说明
2.1 快速入门
Apache ServiceComb Pack 提供了多种示例项目,帮助您快速上手:
- Saga 在 ServiceComb Java Chassis 的应用:参考 出行预订 示例。
- Saga 在 Spring 应用的用法:参考 出行预订示例。
- Saga 在 Dubbo 应用的用法:参考 Dubbo 示例。
- TCC 在 Spring 应用的用法:参考 TCC 示例。
2.2 调试示例
您可以参考 调试 Spring 示例 来了解如何调试示例项目。
3. 项目API使用文档
3.1 关键特性
Apache ServiceComb Pack 提供了以下关键特性:
- 高可用:支持高可用的集群模式部署。
- 高可靠:所有关键事务事件都持久化存储在数据库中。
- 高性能:事务事件通过高性能 gRPC 上报,请求和响应消息通过 Kyro 进行序列化和反序列化。
- 低侵入:仅需 2-3 个注解和编写对应的补偿方法即可引入分布式事务。
- 部署简单:支持通过容器(Docker)进行快速部署和交付。
- 补偿机制灵活:支持前向恢复(重试)及后向恢复(补偿)功能。
- 扩展简单:基于 Pack 架构很容易实现多种协调协议,目前支持 TCC、Saga 协议,未来还可以添加其他协议支持。
3.2 架构说明
ServiceComb Pack 架构由 alpha 和 omega 组成:
- alpha:充当协调者的角色,主要负责对事务进行管理和协调。
- omega:是微服务中内嵌的一个 agent,负责对调用请求进行拦截并向 alpha 上报事务事件。
3.3 多种语言的 Omega 实现
社区提供了多种语言的 Omega 实现:
- Go 语言版本:参见 Go 语言版本 Omega。
- C# 语言版本:参见 C# 语言版本 Omega。
4. 项目安装方式
4.1 通过 Maven 安装
您可以通过 Maven 将 ServiceComb Pack 添加到您的项目中。在 pom.xml
文件中添加以下依赖:
<dependency>
<groupId>org.apache.servicecomb.pack</groupId>
<artifactId>pack</artifactId>
<version>最新版本号</version>
</dependency>
4.2 通过 Docker 安装
如果您希望使用 Docker 进行部署,可以参考以下步骤:
- 构建 Docker 镜像:
$ mvn clean install -Pdemo
- 运行 Docker 容器:
$ docker run -d -p 8080:8080 servicecomb-pack:latest
4.3 通过源码安装
您也可以通过源码进行安装:
- 克隆项目:
$ git clone https://github.com/apache/servicecomb-pack.git
- 编译项目:
$ mvn clean install
通过以上步骤,您可以成功安装并使用 Apache ServiceComb Pack。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0298- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
858
511

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
258
298

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

deepin linux kernel
C
22
5