Apache ServiceComb Pack 技术文档
2024-12-20 15:52:06作者:蔡怀权
1. 安装指南
1.1 环境准备
在安装 Apache ServiceComb Pack 之前,请确保您的环境满足以下要求:
- Java 8 或更高版本
- Maven 3.5 或更高版本
- Docker(可选,用于容器化部署)
1.2 下载软件包
您可以通过以下方式获取 Apache ServiceComb Pack 的最新版本:
- 发行版本:访问 下载软件包 页面下载最新发行版本。
- 预览版本:如果您需要最新的预览版本,可以将以下仓库描述信息添加到您的
pom.xml
文件中:<repositories> <repository> <releases /> <snapshots> <enabled>true</enabled> </snapshots> <id>repo.apache.snapshot</id> <url>https://repository.apache.org/content/repositories/snapshots/</url> </repository> </repositories> <pluginRepositories> <pluginRepository> <releases /> <snapshots> <enabled>true</enabled> </snapshots> <id>repo.apache.snapshot</id> <url>https://repository.apache.org/content/repositories/snapshots/</url> </pluginRepository> </pluginRepositories>
1.3 编译代码
您可以通过以下命令编译代码并运行单元测试:
$ mvn clean install
如果您希望编译示例代码并生成 Docker 镜像,可以使用以下命令:
$ mvn clean install -Pdemo
如果您不希望运行测试,可以使用以下命令:
$ mvn clean install -DskipTests=true -Pdemo
1.4 构建发布包
如果您需要构建软件发布包,可以使用以下命令:
$ mvn clean install -DskipTests=true -Prelease
发布包将生成在 distribution/target
目录下。
2. 项目的使用说明
2.1 快速入门
Apache ServiceComb Pack 提供了多种示例项目,帮助您快速上手:
- Saga 在 ServiceComb Java Chassis 的应用:参考 出行预订 示例。
- Saga 在 Spring 应用的用法:参考 出行预订示例。
- Saga 在 Dubbo 应用的用法:参考 Dubbo 示例。
- TCC 在 Spring 应用的用法:参考 TCC 示例。
2.2 调试示例
您可以参考 调试 Spring 示例 来了解如何调试示例项目。
3. 项目API使用文档
3.1 关键特性
Apache ServiceComb Pack 提供了以下关键特性:
- 高可用:支持高可用的集群模式部署。
- 高可靠:所有关键事务事件都持久化存储在数据库中。
- 高性能:事务事件通过高性能 gRPC 上报,请求和响应消息通过 Kyro 进行序列化和反序列化。
- 低侵入:仅需 2-3 个注解和编写对应的补偿方法即可引入分布式事务。
- 部署简单:支持通过容器(Docker)进行快速部署和交付。
- 补偿机制灵活:支持前向恢复(重试)及后向恢复(补偿)功能。
- 扩展简单:基于 Pack 架构很容易实现多种协调协议,目前支持 TCC、Saga 协议,未来还可以添加其他协议支持。
3.2 架构说明
ServiceComb Pack 架构由 alpha 和 omega 组成:
- alpha:充当协调者的角色,主要负责对事务进行管理和协调。
- omega:是微服务中内嵌的一个 agent,负责对调用请求进行拦截并向 alpha 上报事务事件。
3.3 多种语言的 Omega 实现
社区提供了多种语言的 Omega 实现:
- Go 语言版本:参见 Go 语言版本 Omega。
- C# 语言版本:参见 C# 语言版本 Omega。
4. 项目安装方式
4.1 通过 Maven 安装
您可以通过 Maven 将 ServiceComb Pack 添加到您的项目中。在 pom.xml
文件中添加以下依赖:
<dependency>
<groupId>org.apache.servicecomb.pack</groupId>
<artifactId>pack</artifactId>
<version>最新版本号</version>
</dependency>
4.2 通过 Docker 安装
如果您希望使用 Docker 进行部署,可以参考以下步骤:
- 构建 Docker 镜像:
$ mvn clean install -Pdemo
- 运行 Docker 容器:
$ docker run -d -p 8080:8080 servicecomb-pack:latest
4.3 通过源码安装
您也可以通过源码进行安装:
- 克隆项目:
$ git clone https://github.com/apache/servicecomb-pack.git
- 编译项目:
$ mvn clean install
通过以上步骤,您可以成功安装并使用 Apache ServiceComb Pack。
登录后查看全文
热门项目推荐
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0266cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
143
1.91 K

deepin linux kernel
C
22
6

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
192
273

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
927
551

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392

openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
64

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K

Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8