Apache ServiceComb Pack 技术文档
2024-12-20 21:40:55作者:蔡怀权
1. 安装指南
1.1 环境准备
在安装 Apache ServiceComb Pack 之前,请确保您的环境满足以下要求:
- Java 8 或更高版本
- Maven 3.5 或更高版本
- Docker(可选,用于容器化部署)
1.2 下载软件包
您可以通过以下方式获取 Apache ServiceComb Pack 的最新版本:
- 发行版本:访问 下载软件包 页面下载最新发行版本。
- 预览版本:如果您需要最新的预览版本,可以将以下仓库描述信息添加到您的
pom.xml文件中:<repositories> <repository> <releases /> <snapshots> <enabled>true</enabled> </snapshots> <id>repo.apache.snapshot</id> <url>https://repository.apache.org/content/repositories/snapshots/</url> </repository> </repositories> <pluginRepositories> <pluginRepository> <releases /> <snapshots> <enabled>true</enabled> </snapshots> <id>repo.apache.snapshot</id> <url>https://repository.apache.org/content/repositories/snapshots/</url> </pluginRepository> </pluginRepositories>
1.3 编译代码
您可以通过以下命令编译代码并运行单元测试:
$ mvn clean install
如果您希望编译示例代码并生成 Docker 镜像,可以使用以下命令:
$ mvn clean install -Pdemo
如果您不希望运行测试,可以使用以下命令:
$ mvn clean install -DskipTests=true -Pdemo
1.4 构建发布包
如果您需要构建软件发布包,可以使用以下命令:
$ mvn clean install -DskipTests=true -Prelease
发布包将生成在 distribution/target 目录下。
2. 项目的使用说明
2.1 快速入门
Apache ServiceComb Pack 提供了多种示例项目,帮助您快速上手:
- Saga 在 ServiceComb Java Chassis 的应用:参考 出行预订 示例。
- Saga 在 Spring 应用的用法:参考 出行预订示例。
- Saga 在 Dubbo 应用的用法:参考 Dubbo 示例。
- TCC 在 Spring 应用的用法:参考 TCC 示例。
2.2 调试示例
您可以参考 调试 Spring 示例 来了解如何调试示例项目。
3. 项目API使用文档
3.1 关键特性
Apache ServiceComb Pack 提供了以下关键特性:
- 高可用:支持高可用的集群模式部署。
- 高可靠:所有关键事务事件都持久化存储在数据库中。
- 高性能:事务事件通过高性能 gRPC 上报,请求和响应消息通过 Kyro 进行序列化和反序列化。
- 低侵入:仅需 2-3 个注解和编写对应的补偿方法即可引入分布式事务。
- 部署简单:支持通过容器(Docker)进行快速部署和交付。
- 补偿机制灵活:支持前向恢复(重试)及后向恢复(补偿)功能。
- 扩展简单:基于 Pack 架构很容易实现多种协调协议,目前支持 TCC、Saga 协议,未来还可以添加其他协议支持。
3.2 架构说明
ServiceComb Pack 架构由 alpha 和 omega 组成:
- alpha:充当协调者的角色,主要负责对事务进行管理和协调。
- omega:是微服务中内嵌的一个 agent,负责对调用请求进行拦截并向 alpha 上报事务事件。
3.3 多种语言的 Omega 实现
社区提供了多种语言的 Omega 实现:
- Go 语言版本:参见 Go 语言版本 Omega。
- C# 语言版本:参见 C# 语言版本 Omega。
4. 项目安装方式
4.1 通过 Maven 安装
您可以通过 Maven 将 ServiceComb Pack 添加到您的项目中。在 pom.xml 文件中添加以下依赖:
<dependency>
<groupId>org.apache.servicecomb.pack</groupId>
<artifactId>pack</artifactId>
<version>最新版本号</version>
</dependency>
4.2 通过 Docker 安装
如果您希望使用 Docker 进行部署,可以参考以下步骤:
- 构建 Docker 镜像:
$ mvn clean install -Pdemo - 运行 Docker 容器:
$ docker run -d -p 8080:8080 servicecomb-pack:latest
4.3 通过源码安装
您也可以通过源码进行安装:
- 克隆项目:
$ git clone https://github.com/apache/servicecomb-pack.git - 编译项目:
$ mvn clean install
通过以上步骤,您可以成功安装并使用 Apache ServiceComb Pack。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
177
195
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
264
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
270
94
暂无简介
Dart
623
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
378
3.34 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1