StockPredictionRNN 开源项目教程
2024-08-16 16:29:31作者:劳婵绚Shirley
1. 项目的目录结构及介绍
StockPredictionRNN/
├── data/
│ ├── external/
│ ├── interim/
│ ├── processed/
│ └── raw/
├── models/
├── notebooks/
├── src/
│ ├── data/
│ ├── features/
│ ├── models/
│ └── visualization/
├── .gitignore
├── LICENSE
├── README.md
├── requirements.txt
└── setup.py
- data/: 存储数据文件的目录,包含四个子目录:
- external/: 外部数据。
- interim/: 临时处理数据。
- processed/: 处理后的数据。
- raw/: 原始数据。
- models/: 存储训练好的模型文件。
- notebooks/: Jupyter Notebook 文件,用于数据探索和模型测试。
- src/: 源代码目录,包含以下子目录:
- data/: 数据处理脚本。
- features/: 特征工程脚本。
- models/: 模型训练和评估脚本。
- visualization/: 数据可视化脚本。
- .gitignore: Git 忽略文件配置。
- LICENSE: 项目许可证。
- README.md: 项目说明文档。
- requirements.txt: 项目依赖包列表。
- setup.py: 项目安装脚本。
2. 项目的启动文件介绍
项目的启动文件通常位于 src/
目录下,具体文件名可能因项目而异。假设启动文件为 main.py
,其主要功能如下:
# src/main.py
import argparse
from src.data.make_dataset import make_dataset
from src.models.train_model import train_model
from src.models.predict_model import predict_model
def main(args):
if args.mode == 'train':
make_dataset()
train_model()
elif args.mode == 'predict':
predict_model()
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Stock Prediction RNN')
parser.add_argument('--mode', type=str, default='train', help='train or predict')
args = parser.parse_args()
main(args)
- main.py: 项目的入口文件,根据传入的参数决定是进行训练还是预测。
- make_dataset(): 数据处理函数,用于准备训练数据。
- train_model(): 模型训练函数,用于训练 RNN 模型。
- predict_model(): 模型预测函数,用于进行股票价格预测。
3. 项目的配置文件介绍
项目的配置文件通常为 config.py
或 config.yaml
,假设配置文件为 config.py
,其主要内容如下:
# config.py
import os
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
DATA_DIR = os.path.join(BASE_DIR, 'data')
RAW_DATA_DIR = os.path.join(DATA_DIR, 'raw')
PROCESSED_DATA_DIR = os.path.join(DATA_DIR, 'processed')
MODEL_DIR = os.path.join(BASE_DIR, 'models')
TRAIN_DATA_FILE = os.path.join(PROCESSED_DATA_DIR, 'train.csv')
TEST_DATA_FILE = os.path.join(PROCESSED_DATA_DIR, 'test.csv')
EPOCHS = 50
BATCH_SIZE = 32
LEARNING_RATE = 0.001
- BASE_DIR: 项目根目录。
- DATA_DIR: 数据目录。
- RAW_DATA_DIR: 原始数据目录。
- PROCESSED_DATA_DIR: 处理后的数据目录。
- MODEL_DIR: 模型存储目录。
- TRAIN_DATA_FILE: 训练数据文件路径。
- TEST_DATA_FILE: 测试数据文件路径。
- EPOCHS: 训练轮数。
- BATCH_SIZE: 批大小。
- **LEARNING
热门项目推荐
相关项目推荐
- CangjieCommunity为仓颉编程语言开发者打造活跃、开放、高质量的社区环境Markdown00
- redis-sdk仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。Cangjie033
- 每日精选项目🔥🔥 推荐每日行业内最新、增长最快的项目,快速了解行业最新热门项目动态~ 🔥🔥02
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX022
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML07
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript085
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
- Bbrew🍺 The missing package manager for macOS (or Linux)Ruby01
- byzer-langByzer(以前的 MLSQL):一种用于数据管道、分析和人工智能的低代码开源编程语言。Scala04
热门内容推荐
最新内容推荐
项目优选
收起
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
34
24
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
833
0
advanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
redis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
376
33
searchall
强大的敏感信息搜索工具
Go
2
0
RuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
9
1
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
58
7
easy-es
Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.63 K
1.45 K