EasyEdit项目中使用MEMIT方法编辑Llama3.2-1B模型的内存优化实践
2025-07-03 05:08:02作者:戚魁泉Nursing
在知识编辑领域,EasyEdit项目提供了一个强大的框架,支持多种编辑方法。其中MEMIT(Memory-Efficient Model Editing Technique)是一种高效的模型编辑技术,但在实际应用过程中可能会遇到显存不足的问题。本文将深入分析这一问题并提供解决方案。
问题现象
当用户尝试在A800 GPU上使用MEMIT方法编辑Llama3.2-1B-Instruct模型时,遇到了CUDA显存不足的错误。错误信息显示系统尝试分配506.51GiB的显存,而GPU总容量仅为79.14GiB,其中34.18GiB空闲。这一异常高的显存需求显然不合理。
问题根源
经过分析,这一问题源于MEMIT方法在计算协方差矩阵(cov)时的内存消耗。MEMIT需要预先计算并保存关键统计信息,这一过程会消耗大量显存,特别是当批量大小(bs)设置过大时。
解决方案
针对这一问题,我们推荐以下解决方案:
-
降低批量大小:将默认的bs=100降低到更小的值,如10或1。这一修改可以在layer_stats.py文件中实现。
-
分阶段计算:由于统计信息只需计算一次并可离线保存,建议在显存充足的机器上完成这一步骤,后续编辑可直接使用预计算的统计信息。
-
共享预计算结果:社区用户可以共享已经计算好的统计信息,避免重复计算。例如,Llama3.2-1B模型的统计信息已经由社区成员分享。
实践验证
在实际测试中,将bs降低到1后,使用A40(48G)显卡成功运行了Llama3.2-1B模型的编辑任务。这一配置显著降低了显存需求,使编辑过程得以顺利完成。
技术建议
对于使用MEMIT方法进行大模型编辑的研究人员,我们建议:
- 根据GPU容量合理设置批量大小
- 充分利用预计算统计信息的可重用性
- 在社区中共享已经计算好的统计信息,提高研究效率
- 对于特别大的模型,考虑使用模型并行等技术进一步降低显存需求
通过以上优化措施,研究人员可以在有限的计算资源下,高效地使用MEMIT方法完成大语言模型的知识编辑任务。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C092
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
【免费下载】 国际学术会议Poster海报模板集合【免费下载】 正点原子串口调试助手 XCOM V2.6 下载 MLJar-Supervised:自动化机器学习的利器【亲测免费】 探索TMagic Editor:腾讯出品的高效富文本编辑器【亲测免费】 探索Google Forma:构建未来式表单的新工具【亲测免费】 推荐:posix-spawn - 简化Unix/Linux系统的进程创建 PimpMyLog: 提升日志分析效率的利器 推荐开源项目:MultipleStatusView - 灵活处理多种界面状态的利器 Appleseed: 开源的物理正确渲染引擎 探索C++开发者之路:`CppDeveloperRoadmap`项目解析
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
474
3.54 K
React Native鸿蒙化仓库
JavaScript
287
339
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
224
92
Ascend Extension for PyTorch
Python
283
316
暂无简介
Dart
723
174
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
441
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
699
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19