首页
/ 【亲测免费】 探索生命奥秘的智能利器:AI²BMD - AI驱动的*从头算*生物分子动力学模拟

【亲测免费】 探索生命奥秘的智能利器:AI²BMD - AI驱动的*从头算*生物分子动力学模拟

2026-01-15 16:30:52作者:殷蕙予

项目简介

AI²BMD是一个前沿的开源项目,利用机器学习力场来高效地模拟蛋白质的各种结构,以达到从头算级别的精度。项目涵盖了数据集构建、模型开发和模拟评价与分析等核心环节。在AI²BMD主页,您可以找到更多详细信息,以及预印本论文AI²BMD:基于从头算准确性的蛋白质动力学高效表征

【亲测免费】 探索生命奥秘的智能利器:AI²BMD - AI驱动的*从头算*生物分子动力学模拟

我们正在招聘研究实习生、工程实习生和全职员工,涉及MD模拟、量子化学、AIDD、几何深度学习(GDL)、分子图神经网络、系统设计和CUDA加速等领域。有意者请将简历发送至watong@microsoft.com

数据集

AIMD-Chig

这是一套完整的蛋白质构象MD数据集,由密度泛函理论(DFT)水平计算得出。AIMD-Chig包含了166个原子的Chignolin蛋白的2百万个构象及其对应的势能和原子力,计算采用了M06-2X/6-31g*级别。

【亲测免费】 探索生命奥秘的智能利器:AI²BMD - AI驱动的*从头算*生物分子动力学模拟

详细了解这篇AIMD-Chig论文或阅读背后的故事首个完整从头算精度的蛋白质MD数据集及其开创性计算技术。数据集可以在figshare获取。

模型

ViSNet

ViSNet是"向量-标量交互图神经网络"的简称,它是一种兼顾计算效率和充分利用几何信息的等变几何增强分子图神经网络。ViSNet在《自然通讯》上发表,并被选为"编辑精选",在"AI和机器学习"以及"生物技术和方法"领域都有突出表现。

【亲测免费】 探索生命奥秘的智能利器:AI²BMD - AI驱动的*从头算*生物分子动力学模拟

Baidu AI StudioOGB-LSC NeurIPS 2022 PCQM4Mv2赛道中,ViSNet分别赢得了冠军和优胜奖。代码可在ViSNet分支查看。

Geoformer

Geoformer是“几何Transformer”的简称,引入了一种新的位置编码方法——原子间位置编码(IPE),以超越距离对称的方式在Transformer架构中参数化原子环境。Geoformer可以看作是ViSNet的Transformer变体,已在NeurIPS 2023会议上发布。详情见Geoformer论文Geoformer分支

模拟评估与分析

MLFF的精细力度量

为了解决机器学习力场在MD模拟中的泛化性和鲁棒性问题,我们提出了全局和精细化的力度量指标,从元素和构象两个角度衡量每个原子和每个分子构象的力。这些力度量可用于指导模型训练,提升力场性能和MD模拟稳定性。

【亲测免费】 探索生命奥秘的智能利器:AI²BMD - AI驱动的*从头算*生物分子动力学模拟

请查阅封面故事论文通过精细力度量改善分子动力学模拟中的机器学习力场

马尔可夫状态模型的随机滞后时间参数化

马尔可夫状态模型在研究蛋白质构象动力学中至关重要。然而,固定滞后时间的采样子轨迹可能无法很好地适应不同选择的滞后时间。为此,我们提出了一种新颖的泊松过程,用于生成扰动滞后时间进行子轨迹采样,从而构建马尔可夫链。实验表明,这种方法显著提高了建模的稳健性和动力学分析的精度。

【亲测免费】 探索生命奥秘的智能利器:AI²BMD - AI驱动的*从头算*生物分子动力学模拟

详情请参考封面故事论文马尔可夫状态模型的随机滞后时间参数化

联系方式

如有兴趣,请联系王彤博士(watong@microsoft.com)。

许可证

该项目遵循MIT许可证条款。


AI²BMD通过创新的数据集、强大的模型和严谨的分析方法,为生物分子研究带来前所未有的可能性。不论是学术研究还是工业应用,无论是药物发现还是蛋白质结构解析,AI²BMD都将成为您的得力助手。赶快加入,开启您的智能分子动力学之旅!

登录后查看全文
热门项目推荐
相关项目推荐