dstack项目0.19.12版本发布:增强分布式计算与MPI支持
dstack是一个开源的分布式计算平台,它简化了在多节点环境中运行机器学习工作负载的复杂性。该项目通过声明式配置和自动化管理,让研究人员和工程师能够专注于算法开发,而不必担心底层基础设施的部署细节。
集群管理功能增强
简化的MPI使用体验
在0.19.12版本中,dstack针对MPI(Message Passing Interface)工作负载进行了多项优化,显著提升了分布式计算的易用性。
启动顺序与停止条件控制
新版本引入了两个关键配置参数:
-
startup_order:定义主节点和工作节点的启动顺序
any:默认值,不指定特定顺序master-first:主节点优先启动workers-first:工作节点优先启动
-
stop_criteria:确定多节点运行何时被视为完成
all-done:所有节点都完成后才视为运行结束master-done:主节点完成后即视为运行结束
这些参数特别适合MPI工作负载。例如,MPI要求在工作节点启动后才能执行mpirun命令,此时可配置startup_order: workers-first。同时,MPI工作负载通常在主节点完成后即可视为完成,因此配置stop_criteria: master-done可以避免不必要地等待工作节点退出。
自动化的MPI主机文件管理
dstack现在会自动创建MPI主机文件,并通过DSTACK_MPI_HOSTFILE环境变量暴露其路径。这使得MPI命令可以直接使用该文件,如mpirun --hostfile $DSTACK_MPI_HOSTFILE,大大简化了MPI集群的配置过程。
命令行界面改进
新版本对CLI的显示逻辑进行了优化,使其更加用户友好。原先显示的是内部状态码,对用户不够直观。现在,dstack ps和dstack apply命令的STATUS列会显示易于理解的状态信息,用户可以清楚地了解运行或作业终止的原因。
新增分布式训练示例
TRL分布式微调
新版本提供了使用TRL(Transformer Reinforcement Learning)、Accelerate和Deepspeed进行分布式微调的完整示例。这个示例展示了如何利用dstack简化分布式训练流程,特别适合大规模语言模型的微调场景。
Axolotl分布式训练
另一个新增示例展示了如何使用Axolotl框架在dstack上进行分布式训练。Axolotl是一个专注于高效微调大型语言模型的工具,这个示例为NLP研究人员提供了开箱即用的分布式训练解决方案。
技术细节优化
除了上述主要功能外,0.19.12版本还包含多项技术改进:
- 改进了
.gitignore逻辑,能够处理更多特殊情况 - 增加了
upload_code客户端的超时时间,提升大代码库上传的稳定性 - 修复了缺少
apt-get update的问题,确保软件包安装的正确性 - 优化了相对路径处理,使
dstack apply --repo命令更加可靠 - 更新了后端模板,统一代码格式化风格
这些改进共同提升了dstack平台的稳定性和用户体验,使其成为分布式机器学习工作负载的理想选择。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00