Apache Accumulo 示例项目技术文档
2024-12-23 20:13:15作者:凤尚柏Louis
1. 安装指南
1.1 克隆项目仓库
首先,克隆 accumulo-examples 仓库到本地:
git clone https://github.com/apache/accumulo-examples.git
1.2 安装 Accumulo
按照 Accumulo 快速入门指南 安装并运行 Accumulo 实例。确保在 conf/ 目录下配置 accumulo-client.properties 文件,因为示例将使用该文件连接到你的 Accumulo 实例。
1.3 配置环境变量
查看 env.sh.example 和 accumulo-env.sh(位于你的 Accumulo 安装目录中),根据需要进行自定义配置。如果 ACCUMULO_HOME 和 HADOOP_HOME 已经在你的 shell 中设置,你可以跳过此步骤。确保 ACCUMULO_CLIENT_PROPS 指向你的 accumulo-client.properties 文件路径。
cp conf/env.sh.example conf/env.sh
vim conf/env.sh
1.4 构建示例项目
构建示例项目并将生成的 jar 文件复制到 Accumulo 的 lib/ 目录中,以便将其添加到类路径:
./bin/build
cp target/accumulo-examples.jar /path/to/accumulo/lib/
2. 项目使用说明
2.1 运行示例
每个示例都有自己的文档和运行说明,详细内容可以在 docs/ 目录下找到。示例可以通过 runex 或 runmr 命令运行,这些命令位于项目的 bin/ 目录中。
runex:用于运行单个类的简单脚本,使用示例的 shaded jar 文件。runmr:用于在 YARN 中启动 MapReduce 作业。
2.2 运行提示
- 命令前缀为
$的命令应在 bash 中运行,且应在项目的根目录下执行。 - 多个示例使用
accumulo和accumulo-util命令,这些命令应位于你的PATH中,通常在 Accumulo 安装目录的bin/目录下。 - 命令前缀为
>的命令应在 Accumulo shell 中运行。
3. 项目 API 使用文档
3.1 示例列表
以下是项目中可用的示例及其描述:
| 示例名称 | 描述 |
|---|---|
| batch | 使用批量写入器和批量扫描器 |
| bloom | 创建启用布隆过滤器的表以提高查询性能 |
| bulkIngest | 使用 Hadoop 的 map/reduce 作业进行批量数据导入 |
| classpath | 使用每表类路径 |
| client | 使用表操作,在 Java 中读写数据 |
| combiner | 使用 StatsCombiner 示例查找最小值、最大值、总和和计数 |
| compactionStrategy | 配置压缩策略 |
| constraints | 使用表约束,限制突变大小以避免内存耗尽 |
| deleteKeyValuePair | 删除键值对并在 RFile 中验证删除 |
| dirlist | 存储文件系统信息 |
| export | 导出和导入表 |
| filedata | 存储文件数据 |
| filter | 使用 AgeOffFilter 删除超过 30 秒的记录 |
| helloworld | 在 map/reduce 作业内外插入记录,并在两行之间读取记录 |
| isolation | 使用隔离扫描器确保部分更改不可见 |
| regex | 使用 MapReduce 和 Accumulo 通过正则表达式查找数据 |
| reservations | 使用条件突变实现简单的预订系统 |
| rgbalancer | 使用平衡器在表内均匀分布组中的 tablet |
| rowhash | 使用 MapReduce 读取表并将数据写入同一表的新列 |
| sample | 在 Accumulo 中构建和使用示例数据 |
| shard | 使用交集迭代器与按文档分区的术语索引 |
| spark | 使用 Accumulo 作为 Apache Spark 作业的输入和输出 |
| tabletofile | 使用 MapReduce 读取表并将其中一列写入 HDFS 中的文件 |
| terasort | 生成随机数据并使用 Accumulo 对其进行排序 |
| tracing | 在客户端应用程序和 Accumulo 中生成跟踪数据 |
| uniquecols | 使用 MapReduce 计算 Accumulo 中的唯一列 |
| visibility | 使用可见性(或授权的组合),并显示用户权限 |
| wordcount | 使用 MapReduce 和 Accumulo 对文本文件进行词频统计 |
4. 项目安装方式
4.1 克隆仓库
git clone https://github.com/apache/accumulo-examples.git
4.2 配置环境
cp conf/env.sh.example conf/env.sh
vim conf/env.sh
4.3 构建项目
./bin/build
cp target/accumulo-examples.jar /path/to/accumulo/lib/
通过以上步骤,你可以成功安装并运行 accumulo-examples 项目中的示例。每个示例都有详细的文档和运行说明,帮助你更好地理解和使用 Accumulo 的功能。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 Python案例资源下载 - 从入门到精通的完整项目代码合集 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
667
153
Ascend Extension for PyTorch
Python
216
235
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
303
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
255
321
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
63
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.19 K
651
仓颉编程语言运行时与标准库。
Cangjie
141
876
仓颉编译器源码及 cjdb 调试工具。
C++
133
866