Protobuf-ES 项目使用指南
项目介绍
Protobuf-ES 是一个完全符合 Protocol Buffers 标准的 JavaScript 库,专为 ECMAScript 设计。它不仅通过了 Protocol Buffers 的一致性测试,还提供了完整的 TypeScript 支持,适用于 Web 浏览器和 Node.js 环境。Protobuf-ES 由 Buf 创建,旨在为 JavaScript 开发者提供一个高效、可靠的 Protocol Buffers 实现。
项目快速启动
安装依赖
首先,你需要安装 Protobuf-ES 的代码生成器、运行时库以及 Buf CLI:
npm install @bufbuild/protobuf @bufbuild/protoc-gen-es @bufbuild/buf
配置生成器
创建一个 buf.gen.yaml 文件,配置如下:
version: v2
inputs:
- directory: proto
plugins:
- local: protoc-gen-es
opt: target=ts
out: src/gen
下载示例 .proto 文件
创建一个 proto 目录,并下载示例 .proto 文件:
mkdir proto
curl https://raw.githubusercontent.com/bufbuild/protobuf-es/main/packages/protobuf-example/proto/example.proto > proto/example.proto
生成代码
使用 Buf 或 protoc 生成代码:
npx buf generate
生成完成后,你会在 src/gen 目录下看到生成的 example_pb.ts 文件,其中包含 User 类型和 UserSchema。
使用生成的代码
你可以像这样使用生成的代码:
import { UserSchema } from "./gen/example_pb";
import { create, toBinary, toJson } from "@bufbuild/protobuf";
let user = create(UserSchema, {
firstName: "Homer",
lastName: "Simpson",
active: true,
locations: ["Springfield"],
projects: { SPP: "Springfield Power Plant" },
manager: { firstName: "Montgomery", lastName: "Burns" },
});
const bytes = toBinary(UserSchema, user);
const json = toJson(UserSchema, user);
应用案例和最佳实践
案例1:Web 应用中的数据序列化
在 Web 应用中,Protobuf-ES 可以用于高效地序列化和反序列化数据。例如,前端应用可以将用户数据序列化为二进制格式,通过 HTTP 请求发送到后端,后端再将其反序列化为对象进行处理。
案例2:微服务间的数据交换
在微服务架构中,Protobuf-ES 可以用于服务间的数据交换。通过定义统一的 .proto 文件,不同语言编写的服务可以生成对应的类型定义,确保数据交换的一致性和高效性。
最佳实践
- 统一数据模型:在项目中统一使用
.proto文件定义数据模型,确保前后端和不同服务间数据结构的一致性。 - 代码生成自动化:将代码生成步骤集成到 CI/CD 流程中,确保每次更新
.proto文件后自动生成最新的代码。 - 性能优化:利用 Protobuf-ES 的二进制序列化格式,减少数据传输的大小,提升应用性能。
典型生态项目
Connect-ES
Connect-ES 是 Protobuf-ES 的配套 RPC 库,支持 Connect、gRPC 和 gRPC-Web 协议。它提供了类型安全的 API,使得在 TypeScript 中使用 Protobuf 更加便捷。
Buf CLI
Buf CLI 是一个强大的工具,用于管理和生成 Protobuf 文件。它支持代码生成、格式检查、依赖管理等功能,是 Protobuf-ES 开发者的得力助手。
Buf Schema Registry
Buf Schema Registry 是一个集中式的 Protobuf 模式注册中心,用于管理和共享 .proto 文件。它可以帮助团队更好地协作,确保所有服务使用相同的数据模型。
通过以上模块的介绍,你应该已经对 Protobuf-ES 有了初步的了解,并能够快速上手使用。希望这篇指南能帮助你在项目中更好地应用 Protobuf-ES。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00