推荐:非局部U-Net——生物医学图像分割新突破
2024-05-30 21:47:03作者:薛曦旖Francesca
在这个不断发展的AI时代,深度学习已经在医疗图像分析领域取得了显著的成就,尤其是在生物医学图像分割中。今天我们要向您推荐一个创新项目——Non-local U-Nets for Biomedical Image Segmentation,这是一个接受于AAAI-20的论文实现,旨在提升婴儿大脑图像分割的准确性和效率。
项目介绍
该项目基于Tensorflow重构了3D Unet,并引入了自注意力层的全局聚合块(Global Aggregation Blocks)。这些新型块可以被插入到标准的3D Unet架构中,以增强模型在捕捉长距离依赖关系和全局上下文信息的能力。
项目技术分析
Non-local U-Nets的核心是将自我注意力机制与3D卷积网络相结合,构建出一种非局部结构。这种结构能有效地处理生物医学图像中的复杂模式,尤其对于在同质性阶段(约6-8个月)的婴儿大脑图像,当白质(WM)和灰质(GM)在MRI中显示相似的强度时,提供更精确的分割。
应用场景
这个项目主要应用于婴儿大脑MRI图像的分割,尤其是对白质、灰质和脑脊液区域的自动化识别。这在研究婴儿早期大脑发育中至关重要,它可以帮助研究人员快速准确地分析大量图像数据,从而推动神经科学的进步。
项目特点
- 灵活性:用户可以选择使用标准3D Unet或插入全局聚合块进行实验。
- 易用性:通过修改
configure.py
配置文件即可调整训练、验证和预测设置。 - 高效性:利用Tensorflow优化的tfrecords格式,提高输入处理速度。
- 可视化:集成Tensorboard进行训练过程的实时监控。
- 全面评估:提供预测、评估及结果可视化工具。
最新进展
该项目已在AAAI-20会议上被接受发表,其性能超越了传统3D FCN方法,提供了更优质的分割效果。通过对比实验,我们可以直观地看到改进后模型的出色表现(参见项目README中的结果图示)。
如果你在生物医学图像分析或者深度学习领域有所涉猎,那么这个项目绝对值得尝试。立即加入,体验非局部U-Net所带来的强大分割能力,为你的研究添加新的亮点!
引用
如果你使用此代码,请引用以下论文:
@inproceedings{wang2020non,
title={Non-local U-Nets for Biomedical Image Segmentation},
author={Wang, Zhengyang and Zou, Na and Shen, Dinggang and Ji, Shuiwang},
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
year={2020}
}
探索、学习和贡献,一起推进医疗图像分析的边界!
热门项目推荐
相关项目推荐
- CangjieCommunity为仓颉编程语言开发者打造活跃、开放、高质量的社区环境Markdown00
- redis-sdk仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。Cangjie032
- 每日精选项目🔥🔥 推荐每日行业内最新、增长最快的项目,快速了解行业最新热门项目动态~ 🔥🔥02
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX022
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML07
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript085
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
- Bbrew🍺 The missing package manager for macOS (or Linux)Ruby01
- byzer-langByzer(以前的 MLSQL):一种用于数据管道、分析和人工智能的低代码开源编程语言。Scala04
热门内容推荐
最新内容推荐
项目优选
收起
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
824
0
redis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
375
32
advanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-es
Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
8
1
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
markdown4cj
一个markdown解析和展示的库
Cangjie
10
0