推荐:非局部U-Net——生物医学图像分割新突破
2024-05-30 21:47:03作者:薛曦旖Francesca
在这个不断发展的AI时代,深度学习已经在医疗图像分析领域取得了显著的成就,尤其是在生物医学图像分割中。今天我们要向您推荐一个创新项目——Non-local U-Nets for Biomedical Image Segmentation,这是一个接受于AAAI-20的论文实现,旨在提升婴儿大脑图像分割的准确性和效率。
项目介绍
该项目基于Tensorflow重构了3D Unet,并引入了自注意力层的全局聚合块(Global Aggregation Blocks)。这些新型块可以被插入到标准的3D Unet架构中,以增强模型在捕捉长距离依赖关系和全局上下文信息的能力。
项目技术分析
Non-local U-Nets的核心是将自我注意力机制与3D卷积网络相结合,构建出一种非局部结构。这种结构能有效地处理生物医学图像中的复杂模式,尤其对于在同质性阶段(约6-8个月)的婴儿大脑图像,当白质(WM)和灰质(GM)在MRI中显示相似的强度时,提供更精确的分割。
应用场景
这个项目主要应用于婴儿大脑MRI图像的分割,尤其是对白质、灰质和脑脊液区域的自动化识别。这在研究婴儿早期大脑发育中至关重要,它可以帮助研究人员快速准确地分析大量图像数据,从而推动神经科学的进步。
项目特点
- 灵活性:用户可以选择使用标准3D Unet或插入全局聚合块进行实验。
- 易用性:通过修改
configure.py配置文件即可调整训练、验证和预测设置。 - 高效性:利用Tensorflow优化的tfrecords格式,提高输入处理速度。
- 可视化:集成Tensorboard进行训练过程的实时监控。
- 全面评估:提供预测、评估及结果可视化工具。
最新进展
该项目已在AAAI-20会议上被接受发表,其性能超越了传统3D FCN方法,提供了更优质的分割效果。通过对比实验,我们可以直观地看到改进后模型的出色表现(参见项目README中的结果图示)。
如果你在生物医学图像分析或者深度学习领域有所涉猎,那么这个项目绝对值得尝试。立即加入,体验非局部U-Net所带来的强大分割能力,为你的研究添加新的亮点!
引用
如果你使用此代码,请引用以下论文:
@inproceedings{wang2020non,
title={Non-local U-Nets for Biomedical Image Segmentation},
author={Wang, Zhengyang and Zou, Na and Shen, Dinggang and Ji, Shuiwang},
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
year={2020}
}
探索、学习和贡献,一起推进医疗图像分析的边界!
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器
项目优选
收起
deepin linux kernel
C
24
6
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
271
2.55 K
暂无简介
Dart
561
125
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
170
12
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
仓颉编程语言运行时与标准库。
Cangjie
128
105
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
357
1.85 K
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
440
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
606
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
732
70