推荐:非局部U-Net——生物医学图像分割新突破
2024-05-30 21:47:03作者:薛曦旖Francesca
在这个不断发展的AI时代,深度学习已经在医疗图像分析领域取得了显著的成就,尤其是在生物医学图像分割中。今天我们要向您推荐一个创新项目——Non-local U-Nets for Biomedical Image Segmentation,这是一个接受于AAAI-20的论文实现,旨在提升婴儿大脑图像分割的准确性和效率。
项目介绍
该项目基于Tensorflow重构了3D Unet,并引入了自注意力层的全局聚合块(Global Aggregation Blocks)。这些新型块可以被插入到标准的3D Unet架构中,以增强模型在捕捉长距离依赖关系和全局上下文信息的能力。
项目技术分析
Non-local U-Nets的核心是将自我注意力机制与3D卷积网络相结合,构建出一种非局部结构。这种结构能有效地处理生物医学图像中的复杂模式,尤其对于在同质性阶段(约6-8个月)的婴儿大脑图像,当白质(WM)和灰质(GM)在MRI中显示相似的强度时,提供更精确的分割。
应用场景
这个项目主要应用于婴儿大脑MRI图像的分割,尤其是对白质、灰质和脑脊液区域的自动化识别。这在研究婴儿早期大脑发育中至关重要,它可以帮助研究人员快速准确地分析大量图像数据,从而推动神经科学的进步。
项目特点
- 灵活性:用户可以选择使用标准3D Unet或插入全局聚合块进行实验。
- 易用性:通过修改
configure.py配置文件即可调整训练、验证和预测设置。 - 高效性:利用Tensorflow优化的tfrecords格式,提高输入处理速度。
- 可视化:集成Tensorboard进行训练过程的实时监控。
- 全面评估:提供预测、评估及结果可视化工具。
最新进展
该项目已在AAAI-20会议上被接受发表,其性能超越了传统3D FCN方法,提供了更优质的分割效果。通过对比实验,我们可以直观地看到改进后模型的出色表现(参见项目README中的结果图示)。
如果你在生物医学图像分析或者深度学习领域有所涉猎,那么这个项目绝对值得尝试。立即加入,体验非局部U-Net所带来的强大分割能力,为你的研究添加新的亮点!
引用
如果你使用此代码,请引用以下论文:
@inproceedings{wang2020non,
title={Non-local U-Nets for Biomedical Image Segmentation},
author={Wang, Zhengyang and Zou, Na and Shen, Dinggang and Ji, Shuiwang},
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
year={2020}
}
探索、学习和贡献,一起推进医疗图像分析的边界!
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 开源电子设计自动化利器:KiCad EDA全方位使用指南 Python案例资源下载 - 从入门到精通的完整项目代码合集 Python开发者的macOS终极指南:VSCode安装配置全攻略 网页设计期末大作业资源包 - 一站式解决方案助力高效完成项目 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Jetson TX2开发板官方资源完全指南:从入门到精通
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
暂无简介
Dart
671
155
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
308
Ascend Extension for PyTorch
Python
220
236
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.83 K
React Native鸿蒙化仓库
JavaScript
259
322